Quantitative fluorescence spectroscopy in turbid media using fluorescence differential path length spectroscopy

Arjen Amelink, Bastiaan Kruijt, Dominic J. Robinson, Henricus J. C. M. Sterenborg
2008 Journal of Biomedical Optics  
We have developed a new technique, fluorescence differential path length spectroscopy ͑FDPS͒, that enables the quantitative investigation of fluorophores in turbid media. FDPS measurements are made with the same probe geometry as differential path length spectroscopy ͑DPS͒ measurements. Phantom measurements are performed for two fiber diameters ͑400 m and 800 m͒ and for a wide range of optical properties ͑ s Ј: 0 to 10 mm −1 ; a : 0 to 2 mm −1 ͒ to investigate the influence of the optical
more » ... f the optical properties on the measured differential fluorescence signal. The differential fluorescence signal varies by a factor of 1.4 and 2.2 over the biologically relevant scattering range ͑0.5 to 5 mm −1 ͒ for a given fluorophore concentration for 400 m and 800 m fibers, respectively. The differential fluorescence signal is attenuated due to absorption at the excitation wavelength following Lambert-Beer's law with a path length equal to the differential path length.
doi:10.1117/1.2992132 pmid:19021431 fatcat:dwn6y2wryfdlzomby5lqeef6pa