Relaxation-based viscosity mapping for magnetic particle imaging

M Utkur, Y Muslu, E U Saritas
2017 Physics in Medicine and Biology  
Magnetic Particle Imaging (MPI) has been shown to provide remarkable contrast for imaging applications such as angiography, stem cell tracking, and cancer imaging. Recently, there is growing interest in the functional imaging capabilities of MPI, where color MPI techniques have explored separating different nanoparticles, which could potentially be used to distinguish nanoparticles in different states or environments. Viscosity mapping is a promising functional imaging application for MPI, as
more » ... ation for MPI, as increased viscosity levels in vivo have been associated with numerous diseases such as hypertension, atherosclerosis, and cancer. In this work, we propose a viscosity mapping technique for MPI through the estimation of the relaxation time constant of the nanoparticles. Importantly, the proposed time constant estimation scheme does not require any prior information regarding the nanoparticles. We validate this method with extensive experiments in an in-house magnetic particle spectroscopy (MPS) setup at four different frequencies (between 250 Hz and 10.8 kHz) and at three different field strengths (between 5 mT and 15 mT) for viscosities ranging between 0.89 mPa.s to 15.33 mPa.s. Our results demonstrate the viscosity mapping ability of MPI in the biologically relevant viscosity range.
doi:10.1088/1361-6560/62/9/3422 pmid:28378707 fatcat:x75pohkp6nfgfmncrafdiiatk4