Neural Tree Indexers for Text Understanding

Tsendsuren Munkhdalai, Hong Yu
2017 Association for Computational Linguistics (ACL). Annual Meeting Conference Proceedings  
Recurrent neural networks (RNNs) process input text sequentially and model the conditional transition between word tokens. In contrast, the advantages of recursive networks include that they explicitly model the compositionality and the recursive structure of natural language. However, the current recursive architecture is limited by its dependence on syntactic tree. In this paper, we introduce a robust syntactic parsing-independent tree structured model, Neural Tree Indexers (NTI) that
more » ... a middle ground between the sequential RNNs and the syntactic tree-based recursive models. NTI constructs a full n-ary tree by processing the input text with its node function in a bottom-up fashion. Attention mechanism can then be applied to both structure and node function. We implemented and evaluated a binary-tree model of NTI, showing the model achieved the state-of-the-art performance on three different NLP tasks: natural language inference, answer sentence selection, and sentence classification, outperforming state-of-the-art recurrent and recursive neural networks .
pmid:29081577 pmcid:PMC5657441 fatcat:lbfx6koqhjbxnd4qp7zmleachy