Predicting the direction of US stock prices using effective transfer entropy and machine learning techniques

Sondo Kim, Seungmo Ku, Woojin Chang, Jae Wook Song
2020 IEEE Access  
This study aims to predict the direction of US stock prices by integrating time-varying effective transfer entropy (ETE) and various machine learning algorithms. At first, we explore that the ETE based on 3 and 6 months moving windows can be regarded as the market explanatory variable by analyzing the association between the financial crises and Granger-causal relationships among the stocks. Then, we discover that the prediction performance on the stock price direction can be improved when the
more » ... TE driven variable is integrated as a new feature in the logistic regression, multilayer perceptron, random forest, XGBoost, and long short-term memory network. Meanwhile, we suggest utilizing the adjusted accuracy derived from the risk-adjusted return in finance as a prediction performance measure. Lastly, we confirm that the multilayer perceptron and long short-term memory network are more suitable for stock price prediction. This study is the first attempt to predict the stock price direction using ETE, which can be conveniently applied to the practical field. INDEX TERMS Econophysics, effective transfer entropy, feature engineering, information entropy, machine learning, prediction algorithms, stock markets, time series analysis. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020
doi:10.1109/access.2020.3002174 fatcat:xmpfuhavlbbipgtrtor7dkhlgi