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Abstract—A low-rate distributed denial of service (DDoS) at-
tack has significant ability of concealing its traffic because it is
very much like normal traffic. It has the capacity to elude the cur-
rent anomaly-based detection schemes. An information metric can
quantify the differences of network traffic with various probability
distributions. In this paper, we innovatively propose using two new
information metrics such as the generalized entropy metric and
the information distance metric to detect low-rate DDoS attacks
by measuring the difference between legitimate traffic and attack
traffic. The proposed generalized entropymetric can detect attacks
several hops earlier (three hops earlier while the order )
than the traditional Shannon metric. The proposed information
distance metric outperforms (six hops earlier while the order
) the popular Kullback–Leibler divergence approach as it can

clearly enlarge the adjudication distance and then obtain the op-
timal detection sensitivity. The experimental results show that the
proposed informationmetrics can effectively detect low-rate DDoS
attacks and clearly reduce the false positive rate. Furthermore, the
proposed IP traceback algorithm can find all attacks as well as at-
tackers from their own local area networks (LANs) and discard
attack traffic.

Index Terms—Attack detection, information metrics, IP trace-
back, low-rate distributed denial of service (DDoS) attack.

I. INTRODUCTION

T HE distributed denial of service (DDoS) attack is a serious
threat to the security of cyberspace. It typically exhausts

bandwidth, processing capacity, or memory of a targeted ma-
chine or network. A DDoS attack is a distributed, cooperative
and large-scale attack. It has been widely spread on wired [1]
or wireless networks [2]. A low-rate DDoS attack is an intelli-
gent attack as the attacker can send attack packets to the victim
at a sufficiently low rate to elude detection. Today, a large-scale
DDoS attack is usually combinedwithmultiple low-rate attacks,
which are distributed on the Internet to avoid being detected by
current detection schemes. An attacker can use botnets to launch
a low-rate DDoS attack, producing network behavior that ap-
pears normal. Therefore, it is difficult to detect andmitigate such
attacks [3].
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A. Motivation

Currently, DDoS attack detection metrics are mainly sep-
arated into two categories: the signature-based metric and
anomaly-based metric. The signature-based metric depends on
technology that deploys a predefined set of attack signatures
such as patterns or strings as signatures to match incoming
packets. The anomaly-based detection metric typically models
the normal network (traffic) behavior and deploys it to compare
differences with incoming network behavior. Anomaly-based
detection has many limitations. First, in anomaly-based detec-
tion systems, attackers can train detection systems to gradually
accept anomaly network behavior as normal. Second, the
false positive rate using the anomaly-based detection metric is
usually higher than the one using the signature-based detection
metric. It is difficult to set the proper thresholds which help
to balance the false positive rate and the false negative rate.
Third, it is very difficult to extract the features of normal and
anomalous network behaviors precisely. An anomaly-based
detection metric uses a predefined specific threshold, such as
an abnormal deviation of some statistical characteristics from
normal network traffic, to identify abnormal traffic amongst all
normal traffic. Therefore, the utilization and choice of statis-
tical methods and tools is vitally important [4]. It is generally
accepted that the fractional Gaussian noise function can be used
to simulate real network traffic in aggregation and the Poisson
distribution function can be used to simulate the DDoS attack
traffic in aggregation [5]–[9].
Therefore, many information-theory-based metrics have

been proposed to overcome the above limitations. In in-
formation theory, information entropy is a measure of the
uncertainty associated with a random variable. Information
distance (or divergence) is a measure of the difference between
different probability distributions. Shannon’s entropy and Kull-
back–Leibler’s divergence methods have both been regarded
as effective methods for detecting abnormal traffic based on
IP address-distribution statistics or packet size-distribution
statistics [10]–[12]. Early detection and detection accuracy
(such as a low false positive rate) of DDoS attacks are the two
most important criteria for the success of a defense system.
In this paper, we innovatively propose two new and effective
anomaly-based detection metrics which not only identify at-
tacks earlier, but also produce lower false positive rates when
compared with the traditional Shannon’s entropy method and
the Kullback–Leibler divergence method.

B. Contributions

The main contributions of this paper are as follows.
1) It analyzes and highlights the advantages of generalized
entropy and information distance compared with Shannon
entropy and Kullback–Leibler distance, respectively.
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2) It proposes the generalized entropy and information dis-
tance metrics outperform the traditional Shannon entropy
and Kullback–Leibler distance metrics for the low-rate
DDoS attack detection in terms of early detection, lower
false positive rates, and stabilities.

3) It proposes an effective IP traceback scheme based on an
information distance metric that can trace all attacks back
to their own local area networks (LANs) in a short time.

II. DETECTION ALGORITHMS AND IP TRACEBACK ANALYSIS

In this section, we propose and analyze two effective detec-
tion algorithms and an IP traceback scheme. In this paper, we
make the following reasonable assumptions:
1) we have full control of all the routers;
2) we have extracted an effective feature of network traffic
(e.g., the unforged source IP addresses) to sample its prob-
ability distribution;

3) we have obtained and stored the average traffic of the
normal, as well as the local thresholds and on
their own routers in advance;

4) on all routers, the attack traffic obeys Poisson distribution
and the normal traffic obeys Gaussian noise distribution.

A. Generalized Entropy Metric

In information theory, the information entropy is a measure of
the uncertainty associated with a random variable, forming the
basis for distance and divergence measurements between prob-
ability densities. The more random the information variable, the
bigger the entropy. In contrast, the greater certainty of the infor-
mation variable, the smaller the entropy [13]. The generalized
information entropy as a generalization of Shannon entropy is
one of a family of functions for quantifying either the diversity
uncertainty or randomness of a system. It is a very important
metric in statistics as an index of diversity.
The generalized information entropy of order is defined as

follows:

(1)

where are the probabilities of , ,

When or the probabilities of are all the
same, we have the maximum information entropy as follows:

which indicates the probability density of information is max-
imum decentralization.
When , converges to Shannon entropy, the

equation is as follows:

(2)

When , we can obtain the minimum information en-
tropy . When , this indicates the probability
density of information is at the maximum concentration.

, where is the largest probability
among .
In the case , we have ; therefore, the

generalized information entropy is a nonincreasing function of
.

(3)

Karol discussed the relations between Shannon entropy and
generalized entropies of integer order [14]. The value of gen-
eralized entropy depends on the parameter . In particular, the
more important performance for generalized entropy
is that it can increase the deviation between the different proba-
bility distributions compared to when Shannon entropy is used
[15], [16].
To observe and analyze the formulas of Shannon and gener-

alized information entropy, we know that the high probability
event can contribute more to the final entropy in generalized in-
formation entropy than in Shannon entropy while . The
low probability event can contribute more to the final entropy in
generalized information entropy than in Shannon entropy while

. Therefore, we can obtain different final entropy values
by adjusting the value according to different requirements.
In particular, when , we have

(4)

Based on the above analysis, we consider the different char-
acteristics of probability distribution between the human-par-
ticipating legitimate network traffic and the automatic machine-
generated DDoS attack traffic and include the property of gener-
alized information entropy of order . We design our anomaly-
based DDoS detection system based on the above analysis.
In theory, the Shannon entropy value of fractional Gaussian

noise distribution is higher than that of the Poisson distribu-
tion. The generalized information entropy value is lower than
the Shannon entropy value and the higher probability event can
have a greater influence on the final entropy in generalized in-
formation entropy compared to Shannon entropy while .
In contrast, the generalized information entropy value is higher
than the Shannon entropy value and the lower probability event
can have greater influence on the final entropy in generalized
information entropy than in Shannon entropy while .
Therefore, we can obtain much better detection results by

using generalized information entropy by adjusting the value of
order of generalized entropy in DDoS detection.

B. Information Distance Metric

We consider two discrete complete probability distribu-
tions and with

, , ,
.

The information divergence is a measure of the divergence
between and and is shown below

(5)
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In fact, this is information divergence of order and it is
always nonnegative if . must be the
minimum of the distance if, and only if . The exceptional
case is that if and are incomplete probability distributions
or , then may be negative.
As is an arbitrary positive parameter, we can assume the

following special and useful formulas according to the different
value:

(6)

which is the Kullback–Leibler divergence [17].
Similarly, we can test and validate the inequality as follows:

while is the Poisson probability distribution and is the frac-
tional Gaussian noise probability distribution.
We discuss three important properties of the information di-

vergence: additive, asymmetric, and increasing function of .
To begin with, we prove the additive property.
Assertion 1: Let and be two different probability dis-

tributions on the same set and let and be two different
probability distributions on another set. This means and
are two statistically independent distributions of each other. The
same is true for and .

Proof:

(7)

In general, if ,
, we have

Particularly, when , ,
, , , ,

we have

(8)

This additive property is very useful because it implies that
aggregated traffic can be seen as the sum of individual traffic
and, therefore, it is the theoretical basis of the collaborative de-
tection or multipoint detection [15], [18]. We will design a col-
laborative DDoS detection algorithm later (shown as Listing 1)
based on this property.
Second, we discuss the asymmetric property of divergence.

Assertion 2: Let and be two different probability distri-
butions on the same set, then is a directed divergence,
and in general, while . This in
fact means is not a metric.

Proof: We assume , so we have
, we further have
, and finally we have

Namely, .
The asymmetric property is an important property of informa-

tion divergence as the direction of divergence used in detecting
DDoS attacks can influence the effectiveness of the method.
Namely, in general,

while (9)

When is the Poisson probability distribution, and is the
fractional Gaussian noise probability distribution, we can test
and validate the inequality

(10)

To use information divergence as a metric, we need to over-
come the asymmetric property. Here we propose the informa-
tion distance as defined as follows.
Definition: We name defined as follows as the in-

formation distance:

(11)

Obviously, is a symmetric measure and always is
not less than and . It should be noted that

is undefined if or while .
This means that the distribution of and must be absolutely
continuous with respect to each other.
Likewise, we can also define the Kullback–Leibler distance

as

(12)

Since and , this means that and have to be
absolutely continuous probability distributions.
From the above definitions and formulas, we can see that both

and are symmetric measures and are more
than their own asymmetric divergences.
We can now verify that both and are

metrics. In order to be considered metrics, they must wholly sat-
isfy the properties of identity, symmetry, and triangle inequality.
In fact we can show that
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We have the following:
1) Identity property:

(13)

2) Symmetry property:

(14)

3) Triangle inequality:

(15)

Therefore, both and are metrics and can
be used as distance measures in DDoS attack detection.
Finally, we discuss the third property of information diver-

gence.
Assertion 3: Both and are the in-

creasing functions in while .
This is because they are both the convex functions in while

[19]. Obviously the information distance also has addi-
tive and increasing properties.
According to the above discussion, we design the collabora-

tive detection algorithm as shown in Listing 1 to detect a DDoS
attack and discard its packets.

Listing 1. A collaborative DDoS attack detection
algorithm

1. Set the sampling frequency as , the sampling period
as , and the collaborative detection threshold as .

2. In routers and of Fig. 1, sampling the network
traffic comes from the upstream routers , , ,
and LAN , LAN in parallel.

3. Calculate in parallel the numbers of packet which have
various recognizable characteristics (e.g., the source
IP address or the packet’s size, etc.) in each sampling
time interval within .

4. Calculate the probability distributions of the network
traffic come from , , LAN and , , LAN in
parallel.

5. Calculate their distances on router and ,
respectively, using the formula

6. Sum the distances.
7. If the summed distance is more than the collaborative
detection threshold , then the system detects the
DDoS attack, and begins to raise an alarm and discards
the attack packets; otherwise the routers forward the
packets to the downstream routers.

8. Return to step 2.

To illustrate this algorithm, we use the network topology of
Fig. 1 as an example. Our algorithm can not only detect DDoS
attacks at router via a single-point detection, but also can de-
tect attacks using a collaborative detection at routers , or

Fig. 1. Simple and partial scenario of low-rate DDoS attacks on a victim;
indicates normal client and indicates attacker.

at , , , and . The processing flowchart of the collab-
orative detection algorithm is shown as Fig. 2. Compared with
single-point detection, we can detect attacks earlier by using the
collaborative detection approach because traffic can be analyzed
in upper stream routers instead of just in the victim’s router.
In information theory, we know that both information diver-

gence and information distance are nonnegative values and the
sum of the divergences or distances is always greater than them-
selves. In the meantime, both the divergence and distance are
increasing with order . While , we can increase the di-
vergence or distance between legitimate traffic and attack traffic
to distinguish DDoS attacks easily and earlier by increasing the
value of order and summing the divergences or distances in
collaborative detection. Therefore, in DDoS attack detection,
we can take full advantage of the additive and increasing prop-
erties in of the information divergence and the information
distance to enlarge the distance or gap between legitimate traffic
and attack traffic. This means we can find and raise alarms for
DDoS attacks early and accurately with a lower false positive
rate.

C. IP Traceback Analysis

IP traceback [20] is the ability to find the source of an IP
packet without relying on the source IP field in the packet,
which is often spoofed. We combine our DDoS attacks detec-
tion metric with IP traceback algorithm and filtering technology
together to form an effective collaborative defense mechanism
against network security threats in Internet.
In hop-by-hop IP tracing, the more hops the more tracing pro-

cesses, thus the longer time will be taken. In order to conve-
nience for IP traceback algorithm analysis, we classify two types
of traffic in Figs. 1 and 3 as local traffic and forward traffic, re-
spectively. The local traffic of is the traffic generated from
its LAN , the forward traffic of is the sum of its local traffic
and the traffic forwarded from its immediate upstream routers.
In this paper, we propose an IP tracback algorithm that can trace
the source (zombies) of the attack up to its local administrative
network; Listing 2 illustrates this algorithm.
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Listing 2. An IP traceback algorithm in DDoS attacks
detection

IP_Traceback_Algorithm ()

while(true)
call Check_ForwardTraffic(0)//check attacks on

router (or victim)

Check_ForwardTraffic

calculate information distance
if
call Check_LocalTraffic
for to

the ID of the th immediate upstream router
of router

call Check_ForwardTraffic
end for

end if

Check_LocalTraffic

calculate information distance
if
stop forwarding the attack traffic to downstream

routers (or destination), label the zombie
end if

We discuss the proposed IP traceback algorithm based on a
sample scenario of low-rate DDoS attacks on a victim as shown
in Figs. 1 and 3. When the proposed attacks detection system
detects an attack on a victim, the proposed IP traceback algo-
rithm will be launched immediately.
On router , the proposed traceback algorithm calculates

information distances based on variations of its local traffic and
the forward traffic from its immediate upstream routers; in this
paper, we set LAN of router include the victim. If the infor-
mation distance based on its local traffic is more than the spe-
cific detection threshold , the proposed detection system de-
tects an attack in its LAN ; this means that the detected attack
is an internal attack. If the information distances based on the
forward traffic from its immediate upstream routers and
are both more than the specific detection threshold and

, respectively, the proposed detection system has detected
attacks in routers and , then on and the proposed
traceback algorithm calculates information distances based on
variations of their local traffic and the forward traffic from their
immediate upstream routers, and will find that there are no at-
tacks in LAN and LAN and ; therefore, on routers ,
, and , the proposed algorithm calculates continually in-

formation distances based on variations of their local traffic and
the forward traffic from their immediate upstream routers, then
can find there is an attack (zombie) in LAN so the router
will stop forwarding the traffic from the zombie immediately.

Fig. 2. Processing flowchart of the collaborative detection algorithm in DDoS
attack detection system.

Fig. 3. Local traffic, forward traffic, information distance , and threshold
at a router.

Finally, the proposed algorithm can find attacks (zombies) in
LAN and LAN , respectively.
Therefore, based on the IP traceback algorithm, it is easy to

trace back and figure out all attack routes , , and as shown
in Fig. 1. From Listings 1 and 2, we know that the proposed
traceback algorithm has lower computational cost (or time com-
plexity) than the binary tree traversal algorithm in a binary at-
tack tree, and has higher accuracy of traceback process as the
proposed information distance metric has a lower false positive
rate in attacks detection.
For the evaluation of the total traceback time, we consider

the worst situation that the binary attack tree is a full branches
tree and all zombies are distributed at the far ends evenly; the
evaluation result is shown in Fig. 4. From Fig. 4, we know that
there will be a short traceback time within 5 hops from the
victim to the far end zombies, but with more than 6 hops the
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Fig. 4. Total traceback time with the variation of hops in a binary attack tree
(full branches); indicates one sampling period.

total traceback time will be increasing quickly. This is just the
worst case; actually the distribution of zombies is uneven and
not all of them are located in the far ends of the attack tree,
thus the total traceback time will be decreasing sharply. Further-
more, further measures can be taken to reduce the total traceback
time in the proposed traceback algorithm; for example, we can
improve the traceback algorithm using the parallel processing
method to trace back all zombies, also we can obtain and store
the attack traffics of one sampling period on their own routers in
advance while the proposed detection metric detects an attack
on the victim.

III. EXPERIMENT RESULTS

The proposed detection systems can use either the source IP
address-basedmethod or the IP packet size-basedmethod to cal-
culate the probability distribution of the traffic in the given time
interval. The IP packet size-basedmethod is to utilize the feature
that attacks usually produce packets in defiance of a victim’s re-
sponse and when a flooding-based attack occurs, the same sized
packets are generally used. On the other hand, the legitimate net-
work traffics have typical packet sizes with respect to requests
and responses or data and acknowledgments [5]. Therefore, the
more concentrated the size distribution of observed IP packets,
the smaller the entropy value. Similarly, the more dispersed the
size distribution of IP packets size, the bigger its entropy value.
The source IP address-based method is utilized when attacks
from zombies occur because they usually have a more concen-
trated source IP address than legitimate access. Therefore, we
can obtain the different information entropy value through cal-
culating the probability distribution of the packets’ source IP
address. A bigger entropy value represents more randomness
of the source IP addresses. Through detecting the change of
the information entropy value, we can obtain the change of the
source IP address distribution, and then decide whether the at-
tack traffic is and then discard it.
In the experiment, we use the MIT Lincoln Laboratory Sce-

nario (attack-free) inside tcpdump dataset [21] as the normal
network traffic, and use the Low-rate DDoS attack scenario

Fig. 5. Normal network traffic (attack-free) scenario from MIT/LL; -axis
denotes tick interval (second), and -axis denotes packets/tick (unit).

Fig. 6. Low-rate DDoS attack scenario from CAIDA; -axis denotes tick in-
terval (second), and -axis denotes packets/tick (unit).

from CAIDA [22] as the DDoS attack traffic to test the proposed
algorithms. The normal network traffic scenario is the whole
day data collected on Thursday in the third training week; the
data do not contain any attacks. In this experiment, we let the
sampling period be 300 s, so in this attack-free scenario we col-
lect at random the normal traffic from the 20 650th to 20 950th
as a sampling period. The partial traffic scenario is shown in
Fig. 5. The attack scenario includes a DDoS attack run by an
attacker and is performed over multiple networks. The attack
dataset contains approximately 5 min (300 s) of anonymized
traffic form a DDoS attack on August 4, 2007. The traces in-
clude only attack traffic to the victim and responses from the
victim; nonattack traffic has been removed as much as pos-
sible. The partial attack scenario is shown in Fig. 6. Based on
[23], more than 10 000 attack packets per second can achieve
a high-rate attack; 1000 attack packets per second around can
only achieve 60% of full attack. Therefore, this is a low-rate
DDoS attack. The details of traffic feature are shown in Fig. 7.
We classify statistic IP packets and compute the probability

distributions of the source IP addresses in attack and attack-free
scenarios, respectively, as shown in Figs. 8 and 9. We consider
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Fig. 7. Details of traffic feature of the low-rate DDoS attack scenario from
CAIDA.

Fig. 8. Probability distribution of source IP address in low-rate DDoS attack
(only attack traffic) scenario.

Fig. 9. Probability distribution of source IP address in normal network traffic
(attack-free) scenario.

the real low-rate DDoS attack scenario in a real network envi-
ronment, because the low-rate attack has not yet consumed the
whole computing resources on the server or all of the bandwidth
of the network connecting the server to the Internet. Therefore,
a real low-rate DDoS attack scenario not only contains attack
traffic but also contains attack-free traffic. In this experiment,
we mix the low-rate DDoS attack traffic and the normal network
traffic into a real low-rate DDoS attack scenario. Its probability
distribution of source IP address is shown in Fig. 10.

A. Generalized Entropy Metric

As a comparison, we not only test the generalized entropies
in varied value but also test the Shannon entropies using the
real dataset for normal (attack-free) traffic and attack traffic.

Fig. 10. Probability distribution of source IP address in a real low-rate DDoS
attack (mixed traffic of attack and attack-free) scenario.

TABLE I
COMPARISON OF SHANNON ENTROPY AND GENERALIZED ENTROPY IN THE

LOW-RATE DDoS ATTACK DETECTIONC

Table I shows the Shannon and generalized entropies of
normal traffic and attacks traffic along with their spacing,
the spacing represents the distance of entropy value between
normal traffic and attacks traffic. It demonstrates that the
generalized entropy method outperforms the Shannon entropy
method in low-rate DDoS attack detection as the spacing is
more significant. It also shows that the spacing in generalized
entropy method increases along with the order gradually.
This increase is almost linear. Therefore, we can adjust the
order value according to different requirements.
For the aim of evaluating the performance of generalized

entropy metric globally, we test the proposed metric in the
following situations, respectively: to increase DDoS attack
intensity gradually and quickly, as well as to reduce DDoS
attack intensity gradually then quickly to observe variations
of the spacing. In this experiment, in the victim, we keep the
normal traffic same, then increase the number of the pure
low-rate DDoS attack traffic (as shown in Fig. 6) from 1 to 10
gradually and from 100 to 1000 quickly, as well as reduce the
number of attack traffic to one half gradually then from one
half reduced to one tenth quickly. The experimental results are
shown in Figs. 11, 12, and 13, respectively.
Fig. 11 indicates that the spacing of Shannon and generalized

metrics are increasing along with the increasing of number of
DDoS attack traffic. There are rapid increases of spacing at the
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Fig. 11. Variations of spacing of Shannon and generalizedmetrics in increasing
DDoS attack intensity gradually.

Fig. 12. Variations of spacing of Shannon and generalizedmetrics in increasing
DDoS attack intensity quickly.

Fig. 13. Variations of spacing of Shannon and generalized metrics in reducing
DDoS attack intensity gradually and then quickly.

beginning period whatever the Shannon or generalized metric,
because the attacks still are low-rate attacks during this period.

However, the spacingof thegeneralizedmetric canachievestable
values after three times the number increased of attack traffic in
the order of or after four times the number increased of
attack traffic in the order of ; the spacing of Shannonmetric
cannot achieve a stable value and is still increasing along with
the increase of number of attack traffic. In order to evaluate the
performance of the proposed metric in detecting high intensive
(high-rate) DDoS attack, in the test we increase the number of
attack traffic dramatically from 100 times up to 1000 times to
observe variations of spacing. Fig. 12 shows that the spacing of
the Shannon metric can achieve a stable value after 300 times
the number increased of attack traffic. Therefore, the proposed
generalizedmetric isa stableandbetter (largerspacing)metric for
detectinglow-rateDDoSattack,especiallyexcellent forhigh-rate
attacks in comparison with Shannon metric.
A very low-rate attack traffic will be drown by normal net-

work traffic totally and become extremely difficult to detect
using anomaly-based traffic detection approaches. It is impor-
tant to know how low-rate DDoS attack traffic can be detect
by the proposed metric. In this experiment, we first reduce the
number of low-rate attack traffic gradually and then quickly re-
duce the number. Fig. 13 shows the experimental result that the
spacing of the Shannon and generalized metrics are reducing
along with reducing the number of low-rate attack traffic; there
is stable reduction when the number of attack traffic reduces
gradually for the generalized metric, but reduces quickly for
the Shannon metric. When the number of attack traffic reduces
sharply the spacing of Shannon and generalized metrics will re-
duce dramatically too, but for the Shannon metric, the spacing
will reduce and up to zero (here, the number of attack traffic is
just reduced to one third) extremely quickly, because at this sit-
uation the attack traffic becomes a very low-rate attack. There-
fore, the proposed metric can detect a very low-rate DDoS at-
tack well in comparison with the Shannon metric. For example,
in this experiment, the proposed metric can still detect a very
low-rate attack which is reduced to one tenth the number of the
original low-rate attack traffic while the order .
Now we discuss how early the proposed metric can detect a

low-rate DDoS attack in comparison with the Shannon metric.
To simplify the discussion, we assume a scenario of an attack
based on a binary tree network topology, and the number of
attack traffic in a local router is formed by the numbers of traffic
from its two upstream routers (they are called brother), and let
the numbers of traffic from every brother router be the same.
Therefore, we have: the number of attack traffic in Hop0 (1)
two times number of attack traffic in Hop1 (1/2)
four times number of attack traffic in Hop2 (1/4)
eight times number of attack traffic in Hop3 (1/8) ,
then based on this rule we test the proposed metric and the
experimental result is shown in Table II. From this table we
can see that the proposed metric can detect a low-rate DDoS
attack two hops earlier than the Shannon metric while the order

, and three hops earlier approximately while .
According to [24], generally on the Internet, the normal route
hops between two network ends is 15; therefore, the proposed
metric should be a better metric in detecting attacks for several
hops earlier, such as three hops earlier while the order .
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TABLE II
COMPARISON (HOP EARLY) OF GENERALIZED ENTROPY METRIC WITH

SHANNON ENTROPY METRIC IN THE LOW-RATE DDoS ATTACK DETECTION

TABLE III
REDUCED FALSE POSITIVE RATE OF THE PROPOSED METRIC IN

COMPARISON WITH THE SHANNON ENTROPY METRIC

We further compute and compare the false positive rate of
the proposed approach with the Shannon metric. There will be
different false positive rate values in different situations due to
the real network being extremely dynamic and complex. There-
fore, it is very difficult to obtain a definite value of the false
positive rate by using a certain metric. For the purpose of the
discussion in this paper, we assume that the false positive rate
is known by using the Shannon metric in the real network sit-
uation. The false positive rate is defined as the proportion of
negative events (not attacks) that were mistakenly reported as
being positive events (attacks) in the total of tested events. We
choose the mid-value of the spacing as the threshold, and ob-
tain a reduced false positive rate when using the proposedmetric
compared to the Shannonmetric. The reduced false positive rate
is defined as

(16)

This measurement represents how better the generalized
metric outperforms the traditional Shannon metric. Table III
shows that the proposed metric clearly reduces the false pos-
itive rate, from 161.71% to 199.19%, which is more than 1.6
times of the baseline false positive rate.
In summary, compared with the Shannon metric, the pro-

posed generalized entropy metric is a stable and low false pos-
itive rate metric in low-rate DDoS attacks detection, it can not
only effectively detect low-rate attacks but also detect attacks
several hops early.

B. Information Distance Metric

In this experiment, we use the real normal network traffic and
low-rate attack datasets shown above as the incoming traffic to

Fig. 14. Variations of information distance and divergence as well as diver-
gence by inappropriate measure along with the value of the order ,
the Kullback–Leibler distance and divergence as well as the divergence by in-
appropriate measure while .

test the effectiveness of the proposed metric in detecting a low-
rate DDoS attack, and further to study the following properties.
1) When detecting low-rate DDoS attacks, our approach is
much better than the Kullback–Leibler divergence ap-
proach because we are able to enlarge the distance rate
and reduce the false positive rate.

2) Ourmetric definition is necessary because if the divergence
is used inappropriately, the outcome will be unsatisfactory
as the distance (gap) will be very small, and the false pos-
itive rate will be increased.

3) Our approach is able to achieve early detection of low-rate
DDoS attacks.

4) By adjusting the value of , we can adjust the resulting
distance in our approach.

In order to test variations of distance and divergence of the
Kullback–Leibler metric and information metric along with the
order , the normal network traffic and the low-rate attack traffic
must have the same number of source IP addresses in a sampling
period. Therefore, we sample the above low-rate DDoS attack
traffic again to form a new low-rate attack which will have the
same number of source IP addresses with the normal traffic, and
have the same probability distribution of source IP addresses
with the original attack traffic. The experimental result is shown
in Fig. 14, which indicates that the information distance and di-
vergence as well as the divergence by inappropriate measure all
are increasing along with the increase of order , but the infor-
mation distance increases quickly, the divergence by inappro-
priate measure increases a little and keeps a stable value after
the order . The information distance has a bigger gap
than the Kullback–Leibler distance and divergence. Therefore,
the proposed metric outperforms the Kullback–Leibler metric
in a low-rate DDoS attack detection. It is important that we can
adjust the resulting (detecting) distance as a requirement by ad-
justing the value of to achieve better detection.
We first discuss the detection effectiveness of the proposed

information distance metric under a very low-rate DDoS at-
tack condition, then discuss how many hops early with the pro-
posed metric in comparison with the Kullback–Leibler metric
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TABLE IV
COMPARISON (HOP EARLY) OF INFORMATION DISTANCE METRIC WITH
KULLBACK–LEIBLER DISTANCE METRIC IN THE LOW-RATE DDoS

ATTACK DETECTION

TABLE V
COMPARISON (HOP EARLY) OF INFORMATION DISTANCE METRIC WITH
KULLBACK–LEIBLER DISTANCE METRIC IN THE LOW-RATE DDoS

ATTACK DETECTION (CONTINUED)

in a low-rate attack. We assume the low-rate attack scenario and
the network topology are the same as above (used in generalized
metric test). The experimental results are shown in Tables IV
and V. From Tables IV and V, we know that the value of dis-
tance is decreasing gradually along with an increase of hop
count, namely the lower the rate of attack traffic, the smaller the
distance. The proposed metric can detect a very low-rate attack
better than using the Kullback–Leibler metric; for example, the
distance still has a big gap (2.1832, while the order ; the
larger distance will give a better accuracy in an attack detection)
when the attack traffic is reduced to 1/64 of itself, but for the
Kullback–Leibler distance it becomes a little gap (0.3832). Fur-
thermore, the experimental results also show that the proposed
metric can detect a low-rate DDoS attack early in comparison
with the Kullback–Leibler distance metric, such as there should
be three hops early while the order , four hops early while
the order , and while the order it can have six
hops early. Therefore, the information distance metric is a good
metric for detecting low-rate DDoS attacks; it can not only de-
tect very low-rate attacks but also have successful detection sev-
eral hops earlier than the Kullback–Leibler distance metric.
In order to evaluate the performance of the proposed infor-

mation distance metric in detecting high intensive (high-rate)
DDoS attack, we increase the number of attack traffic dramat-
ically from 100 times up to 1000 times to observe the varia-
tions of distance. Fig. 15 indicates that the distances of the pro-
posed metric are increasing gradually along with the increase of

Fig. 15. Variations of distance of the information andKullback–Leibler metrics
in increasing DDoS attack intensity quickly.

TABLE VI
REDUCED FALSE POSITIVE RATE OF THE PROPOSED INFORMATION
DISTANCE METRIC IN COMPARISON WITH THE KULLBACK–LEIBLER

DISTANCE METRIC

the number of attacks traffic. There are rapid increases of dis-
tance at the beginning period, because the attack after aggre-
gation is still a low-rate attack during this period. Then there
should be the stable increase by the rapid increase of attack
intensity. Therefore, the proposed metric is a stable and better
(larger gap) metric for detecting low-rate DDoS attack, and is
perfect for high-rate attacks detection in comparison with the
Kullback–Leibler metric.
We compute the false positive rate of the proposed informa-

tion distance metric under the same conditions as the above
(used for generalized entropy metric). Similarly, the reduced
false positive rate is defined as

(17)

The result is shown in Table VI, which indicates the reduced
false positive rate by the proposed metric in different values of
order in comparison to the Kullback–Leibler distance metric.
It can clearly reduce the false positive rate up to 146.19% of
the Kullback–Leibler metric while the order for the
proposed information distance metric.
For all situations, it has been shown that the proposed infor-

mation distance metric is a better metric because first, it can be
used in real measurements in comparison with the information
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divergence approach which is not a real metric (it is asymmetric
and the distance gap between the normal network traffic and
the attack traffic will be smaller if we used the inappropriate
divergence measurement, which may result in decreasing the
detection sensitivity during a low-rate DDoS attack); second,
it is a stable metric which holds a low false positive rate (it
can not only effectively detect low-rate attacks but also detect
the attacks several hops earlier in comparison with the Kull-
back–Leibler distancemetric). Confidence intervals will be ben-
eficial for estimating the possible attacks based on the outputs of
the system parameters, especially for predicting future attacks.
Confidence intervals are a good indication for the reliability the
prediction system. Due to the paper length limit, obtaining the
confidence intervals of the system will be our future work.

IV. RELATED WORK

The metrics of anomaly-based detection have been the focus
of intense study for years in an attempt to detect intrusions and
attacks on the Internet. Recently, information theory as one of
the statistical metrics is being increasingly used for anomaly
detection. Feinstein et al. [25] present methods to identify
DDoS attacks by computing entropy and frequency-sorted
distributions of selected packet attributes. The DDoS attacks
show anomalies in the characteristics of the selected packet
attributes, and the detection accuracy and performance are
analyzed using live traffic traces from a variety of network
environments. However, because the proposed detector and
responder lack coordination with each other, the possible
impact of responses on legitimate traffic and expenses for
computational analysis are increased. Yu and Zhou [26] applied
an information theory parameter (entropy rate) to discriminate
the DDoS attack from the surge legitimate accessing. This is
based on shared regularities with different DDoS attack traffic
which are different from real surging accessing in a short
period of time. However, attackers can adopt a multiple attack
package generation function in one attack to easily fool the
proposed detection algorithm. Lee and Xiang [27] used several
information-theoretic measures, such as entropy, conditional
entropy, relative conditional entropy, information gain, and
information cost for anomaly detection. To some extent these
measures can be used to evaluate the quality of anomaly de-
tection methods and build the appropriate anomaly detection
models even though it is very difficult to build an adaptive
model that can dynamically adjust to different sequence lengths
(or time windows) based on run-time information.
A low-rate DDoS attack is substantially different from the tra-

ditional (high-rate) DDoS attack. A few researchers have pro-
posed several detection schemes against this type of attack. Sun
et al. [28] proposed a distributed detection mechanism that used
a dynamic time warping method to identify the existence of the
low-rate attacks, and then a fair resource allocation mechanism
will be used to minimize the number of affected flows. How-
ever, this method can lose the legitimate traffic to some extent.
Shevtekar et al. [3] presented a light-weight data structure to
store the necessary flow history at edge routers to detect the
low-rate TCP DoS attacks. Although this method can detect any
periodic pattern in the flows, it may not be scalable and can be
deceived by the IP address spoofing. Chen et al. [18] present
a collaborative detection of DDoS attacks. While focusing on

detection rate, it is difficult for this scheme to differentiate the
normal flash crowds and real attacks. As it heavily relies on
the normal operation of participating routers, the false positives
will increase if the routers are compromised. Zhang et al. [29]
propose to use self-similarity to detect low-rate DDoS attacks.
While the approach is claimed to be effective, the paper does
not use real scenario data to evaluate it.
Kullback–Leibler divergence, as a well-known information

divergence, has been used by researchers to detect abnormal
traffic such as DDoS attacks [10], [11], [30]. The difference be-
tween previous work and our research is that we are the first
to propose using information divergence for DDoS attack de-
tection. Information divergence, as the generalized divergence,
can deduce many concrete divergence forms according to dif-
ferent values of order . For example, when , it can deci-
pher the Kullback–Leibler divergence. It is very important and
significant that we can obtain the optimal value of divergence
between the attack traffic and the legitimate traffic in a DDoS
detection system by adjusting the value of order of informa-
tion divergence. In addition to this, we also study the properties
of Kullback–Leibler divergence and information divergence in
theory and overcome their asymmetric property when used in
real measurement. We successfully convert the information di-
vergence into an effectivemetric in DDoS attack (including both
low-rate and high-rate) detection.

V. CONCLUSION

In this paper, we propose two new and effective information
metrics for low-rate DDoS attacks detection: generalized en-
tropy and information distance metric. The experimental results
show that these metrics work effectively and stably. They out-
perform the traditional Shannon entropy and Kullback–Leibler
distance approaches, respectively, in detecting anomaly traffic.
In particular, thesemetrics can improve (or match the various re-
quirements of) the systems’ detection sensitivity by effectively
adjusting the value of order of the generalized entropy and
information distance metrics. As the proposed metrics can in-
crease the information distance (gap) between attack traffic and
legitimate traffic, they can effectively detect low-rate DDoS at-
tacks early and reduce the false positive rate clearly. The pro-
posed information distance metric overcomes the properties of
asymmetric of both Kullback–Leibler and information diver-
gences. Furthermore, the proposed IP traceback scheme based
on information metrics can effectively trace all attacks until
their own LANs (zombies). In conclusion, our proposed infor-
mation metrics can substantially improve the performance of
low-rate DDoS attacks detection and IP traceback over the tra-
ditional approaches.
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