A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2016; you can also visit the original URL.
The file type is application/pdf
.
Unsupervised Learning of Visual Sense Models for Polysemous Words
2008
Neural Information Processing Systems
Polysemy is a problem for methods that exploit image search engines to build object category models. Existing unsupervised approaches do not take word sense into consideration. We propose a new method that uses a dictionary to learn models of visual word sense from a large collection of unlabeled web data. The use of LDA to discover a latent sense space makes the model robust despite the very limited nature of dictionary definitions. The definitions are used to learn a distribution in the
dblp:conf/nips/SaenkoD08
fatcat:5a644bln5fchxmcfqxwq6on5gi