An Algebraic Proof of Thurston's Rigidity for a Polynomial [article]

Alon Levy
<span title="2012-11-30">2012</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We study rational self-maps of P^1 whose critical points all have finite forward orbit. Thurston's rigidity theorem states that outside a single well-understood family, there are finitely many such maps over C of fixed degree and critical orbit length. We provide an algebraic proof of this fact for tamely ramified maps for which at least one of the critical points is periodic. We also produce wildly ramified counterexamples.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="">arXiv:1201.1969v2</a> <a target="_blank" rel="external noopener" href="">fatcat:z3bikc4hrncuvnfla76jdfdlha</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> File Archive [PDF] </button> </a> <a target="_blank" rel="external noopener" href="" title=" access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> </button> </a>