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In the past 25 years, tremendous progress has been made in modeling the
dynamics of the term structure of interest rates, which play an instrumental
role in determining prices and hedging portfolios of fixed-income derivative
securities. This article reviews the theoretical development of the dynamic
models of the default-free term structure and their applications in pricing
interest rate options. Classic models, sometimes termed equilibrium
models, and their multifactor extensions are outlined. These models provide
clear economic intuitions connecting the term structure with economic
fundamentals. They also lay a foundation for the framework of the arbitrage
models that price interest rate derivatives on the basis of the market prices
of bonds. This framework has been expanded and enriched by recent
advances in directly modeling observable market rates through the market
models and in incorporating an internally consistent correlation structure
through the “infinite-dimensional” models.

term structure of interest rates is a set of
yields on discount bonds (i.e., zero-
coupon bonds) with a sequence of matur-
ing dates. Most term structures are calcu-

lated from the observed prices of government
securities, such as Treasury bonds and bills in the
United States, which are generally regarded as
default free in developed countries. The shape of
the term structure varies over time. Most of the
time, the term structure is upward sloping, mean-
ing yields on long-term bonds are higher than those
on short-term bonds. The term structure can also be
downward sloping, however, as it was in the
United States in 1973 and the early 1980s, when
short-term yields were above long-term yields. For
much of 2000, the term structure was hump shaped;
yields on intermediate-term notes (2–5 years) were
higher than yields on both long-term (10–30 years)
bonds and short-term (up to 1 year) bills.

The dynamics of the term structure of interest
rates play an instrumental role in determining
prices and hedging portfolios of many fixed-
income derivative products. This article provides a
review of the significant progress in modeling the
dynamics of the default-free term structure of inter-
est rates since the late 1970s. Although a number of
excellent volumes are available on this subject,1 my
aim is to offer a coherent and up-to-date account in
a multilayered structure of major developments

and recent advances. I first provide a nontechnical
overview of various dynamic models of the term
structure. Then, after a brief summary of the tech-
nical ideas and notations commonly used in these
models, I go into a detailed discussion of the mod-
els and their applications in pricing fixed-income
securities.2

Overview
Government bonds, such as U.S. Treasury securi-
ties, are financial instruments that provide fixed
and certain cash flows (coupon and principal pay-
ments) on a sequence of prespecified dates. The
zero-coupon yields corresponding to various
maturities of these bonds can be deduced by a
method called “bootstrapping” from the market
prices of the most frequently traded coupon-
bearing bonds, sometimes referred to as “bench-
mark” issues. This set of interest rates constitutes a
term structure, or a yield curve, which can have
different shapes over time.3 Other Treasury bonds
or certain cash flows may be priced relative to the
benchmarks; they are then said to be “priced off the
yield curve.” If we can obtain the current term
structure from the market directly, why then do we
need term-structure models?

Unlike government bonds themselves, most
interest rate derivative securities, such as a call
option on a 20-year T-bond, have payoffs that are
neither fixed nor certain. These payoffs depend on
either the future prices of the underlying govern-
ment bonds or future levels of interest rates, all of
which are unknown at the time of valuation. Valu-
ation of interest rate derivatives thus requires
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specific assumptions about the evolution of future
interest rates, whereas such assumptions are not
necessary for the relative valuation of a “straight
bond” in the current market.4 For valuing deriva-
tives, we need to model the dynamics of interest
rate evolution.

The development of term-structure models
has been marked by several milestones. Earlier
researchers recognized the importance of the sto-
chastic nature of interest rates and modeled the
evolution of the short rate as a random walk.
Vasicek (1977) introduced a general no-arbitrage
framework for bonds and examined a particular
model of term-structure evolution in which the
short rate is mean reverting. Cox, Ingersoll, and
Ross (CIR, 1985) showed how to cast the term-
structure theory in a well-defined economic envi-
ronment and constructed a model for positive
interest rates. The CIR model retains the mean
reversion in the short-rate dynamics but—unlike
the Vasicek model, which assumes a constant vari-
ance—allows the variance of short-rate changes to
be proportional to the level of the short rate. Both
of these models prescribe a specific structure for the
dynamics of interest rates and strive for a descrip-
tion of systematic variations of the term structure
based on economic fundamentals.

The term-structure literature often classifies
the Vasicek and CIR models as “equilibrium mod-
els” because they explicitly specify the market
prices of risk and can be supported by an economic
equilibrium. Numerous authors have extended the
models into a setting in which the dynamics of the
term structure are driven by multiple factors. In
addition to the instantaneous short rate, authors
have used such factors as a random long-run mean
that the short rate is reverting to, stochastic volatil-
ity of the short rate, and interest rates of various
maturities. Like the Vasicek and CIR models, these
models can, in principle, be estimated from histor-
ical data on interest rates and bond prices and then
be used to price both government bonds and bond
options.5 The bond prices produced by these mod-
els are likely to be different, however, from the
corresponding market prices at any given time.
And although this characteristic may help bond
investors spot possible mispricing in bonds, based
on the model assumptions about the behavior of
the economic fundamentals, this feature is not
desirable for pricing interest rate derivatives.

In practice, pricing interest rate derivatives
requires matching the model bond prices to the
current term structure. The reason is that trading
derivatives usually involves simultaneously hedg-
ing the risk exposure by using the underlying secu-
rities. So, to the extent that a hedging portfolio can

be constructed, the derivative price should be
based, to avoid arbitrage opportunities, on the mar-
ket price of the underlying security. To this end,
Heath, Jarrow, and Morton (HJM, 1992) established
a framework for pricing interest rate derivatives
that depends on the evolution of the entire forward-
rate curve, starting from the current market curve.
This approach builds on the intuition in the Ho–Lee
model (1986) and uses the no-arbitrage condition to
pin down the relationship between the drift and the
diffusion of the forward rate. The framework has a
general structure and embeds many popular mod-
els as special cases. Much effort has been expended
to efficiently implement derivative-pricing models
in this framework. This class of models is typically
termed “arbitrage models” (or “arbitrage-free mod-
els”) and will be discussed in detail later.

The implementation of the HJM framework for
pricing interest rate derivatives has encountered
several difficulties. One of them is that the instanta-
neous forward rate term structure is not directly
observable; thus, the HJM models are cumbersome
to apply. Moreover, continuous compounding of
the instantaneous forward rate rules out the popu-
lar specification of a lognormal process in this
framework. The effort to mitigate this problem has
led to the market models that study the observable
interest rates of finite maturities, such as London
Interbank Offered Rates (LIBORs) and swap rates,
directly within the HJM framework (Brace, Gatarek,
and Musiela 1997; Jamshidian 1997; Miltersen,
Sandmann, and Sondermann 1997). On another
front, the “random field” or “stochastic string”
models, developed initially by Kennedy (1994) and
extended and characterized by Goldstein (2000),
Santa-Clara and Sornette (2001), and Filipović
(2000), describe the dynamics of the forward curve
through infinite-dimensional shocks to it; specifi-
cally, each point on the forward curve is driven by
its own shock. With a carefully defined correlation
structure between these shocks, these “infinite-
dimensional” models allow a flexible and consis-
tent description of the evolution of forward rates
that matches with the market prices at all times.

The equilibrium models and the arbitrage
models have similar structures.6 The distinction
comes from the different input that is used to cali-
brate the model parameters. The equilibrium mod-
els explicitly specify the market prices of risk; the
model parameters, assumed to be time invariant,
are estimated statistically from historical data.
These models are often used by economists to
understand the relationship between the shape of
the term structure and its forecast for future
economic conditions. Traders, however, would
rather use arbitrage models because these models
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are calibrated to match the model price of the
underlying security with its market price. So, trad-
ers have to make only one bet on the derivative
price—a bet based on the market price of the under-
lying security. I maintain this classification of mod-
els for convenience of exposition in this article.

Before the detailed review of the classical
models and recent advances, the following section
homes in on some important, and somewhat tech-
nical, terminology and the notations commonly
used in the development of term-structure mod-
els.7 I also introduce the no-arbitrage condition
and the risk-neutral valuation methodology that
are important principles in derivatives valuation.
Then, I examine the equilibrium models to explain
the basic structures of the models and follow that
description by examining their transformation into
the arbitrage models used in the industry.
Throughout this article, models are presented in
their continuous-time formulation for expositional
clarity with minimal technical formality.8

Preliminaries
This section lays out a set of notions about interest
rates, yields, and term structures and presents the
various representations of the term structure that
are conventional in term-structure modeling. The
section also provides an informal introduction to
the no-arbitrage condition and the risk-neutral val-
uation methodology that are essential in pricing
fixed-income derivatives.

Notions of Interest Rates, Yields, and Term
Structures. A bond that entitles its holders to a
single certain cash flow of F on a preset date in the
future is a pure discount bond. It is also a zero-coupon
bond. The amount F is referred to as either the
principal, the face value, or the notional amount.

Let P(t,T) be the price at time t of a discount
bond maturing at time T with the face value F = $1.
Then, the relationship between the price and its
continuously compounded yield, R(t,T), is

P(t,T) = e–R(t,T)(T–t) (1a)

or

(1b)

R(t,T) is also termed the spot rate for maturity T. In
particular, the spot rate of instantaneous maturity,
also known as the short rate, is simply the limit of
R(t,T) when T collapses to t—that is, 

(2)

The time-t continuously compounded forward
rate, f(t,T,τ), covering the future period (T, T + τ),
where τ denotes a length of time, is defined by

(3a)

which leads to

(3b)

As τ approaches zero, the instantaneous forward
rate, f (t,T), becomes

(4)

Equation 4 can also be expressed in an integral
form:

(5)

From Equation 5 and Equation 1, one deduces

(6)

Equation 6 indicates that the spot rate may be inter-
preted as an average of the instantaneous forward
rates over the remaining time to maturity of the
bond.

With these definitions, the term structure of
interest rates is normally represented by a set of
yields, R(t,T), of default-free discount bonds of var-
ious maturities. It may also be represented by a set
of prices, P(t,T), of zero-coupon bonds or a set of
instantaneous forward rates, f(t,T). Equations 4–6
demonstrate the relationships among these repre-
sentations. 

Although short-maturity government bills are
discount bonds, most other government securities
are coupon-bearing bonds with recurring coupon
payments on a sequence of prespecified dates until
maturity. For default-free government securities,
however, these coupon bonds can be thought of as
a portfolio of zero-coupon bonds of various matu-
rities and face values.9 Therefore, given a full set of
discount bond prices, the prices of these coupon
bonds are fully determined by arbitrage. This prop-
erty permits a focus on the prices of discount bonds
in modeling the term structure of interest rates.

So far, we have defined the term structure of
interest rates in terms of default-free yields on zero-
coupon bonds. The models of the term structure,
however, are often used to price interest rate deriv-
atives such as caps, floors, and swaptions, which
are primarily based on LIBORs. LIBORs are not
default-free rates, although they come from finan-
cial institutions with high credit ratings. In princi-
ple, one would have to consider additional risk
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premiums associated with these rates. Duffie and
Singleton (1999) provided a general framework for
modeling defaultable bonds that is similar to the
framework used for modeling the term structure of
default-free rates. Because of this similarity in the
modeling frameworks, the models I discuss may
also be used to describe the term structure of
LIBORs or swap rates.10

No-Arbitrage Condition and Risk-Neutral
Valuation. The no-arbitrage condition and risk-
neutral valuation are concepts of fundamental
importance in the analysis of contingent claims.
Contingent claims are securities whose payoffs on
one or several future dates depend on realized
states of the world, which are often characterized
by the prevailing prices of the underlying securities
(or the previous paths of these prices). Interest rate
derivatives are such contingent claims because
their future payoffs are tied to the levels of interest
rates. Their valuation depends critically on the
dynamics of the term structure and is governed by
the no-arbitrage condition.

The no-arbitrage condition states that a strategy
that provides a positive future payoff in at least one
state of the world and no negative payoffs in any
states of the world must have a cost greater than
zero today. This condition implies that a contingent
claim whose payoffs can be replicated by a portfolio
of securities should have a price equal to the value
of the replicating portfolio. Otherwise, an arbitrage
strategy exists to exploit the mispricing.11 This
pricing-by-replication principle leads to the famed
Black–Scholes (1973) formula for pricing European
stock options12 and is the foundation for the pricing
frameworks for interest rate derivatives.

The feasibility of replicating payoffs from a
derivative product by using the underlying secu-
rity and cash allows a complete hedge against the
risk exposure of the derivative product, which
enables application of a powerful methodology—
risk-neutral valuation. This method of risk-neutral
valuation involves calculating the expectation of
the discounted payoffs from a security with a par-
ticular probability measure as if all investors were
risk neutral (i.e., indifferent to risk). It thus implies
that the expected return on the security in this
fictitious world is simply the risk-free rate, r(t).

The existence of this fictitious world with the
risk-neutral probability measure is guaranteed by
the no-arbitrage condition.13 Under the risk-neutral
measure, Q, the current value, V0, of a security that
pays off VT at time T is the expectation of the dis-
counted future payoff:

(7)

where r(s) is the future short rate at time s < T. Note
that under this measure, the discount factor (also
called “numeraire”) is an instantaneously com-
pounded money market account, exp ,
and the discounted security value is a martingale,
which means that its expected future value is sim-
ply its current value.

The risk-neutral valuation method exploits the
simplicity of its expectation expression, which is
free of preference parameters. The connection
between the risk-neutral measure and the real-
world measure is established through the market
price of risk, namely, the required compensation in
expected excess return over the risk-free rate for
bearing a unit of risk as measured by the volatility
of returns. Note that in the models discussed in this
article, the equilibrium models start with a specifi-
cation of the market price of risk in order to arrive
at the valuation of securities whereas the arbitrage
models begin directly under the risk-neutral mea-
sure to obtain the valuation formulas.

In addition to the risk-neutral measure, other
measures may be convenient to use in valuing
interest rate derivatives. An example is the forward
measure, under which the discounting numeraire is
the price of a discount bond maturing at time
T, P(t,T), and the discounted value of a tradable
security is a martingale. Moreover, the forward rate
maturing at time T is also a martingale under this
measure (i.e., its drift is zero). In this article, the
risk-neutral measure or the forward measure is
used in different models of the term structure.

Equilibrium Models
Equilibrium models start with specific assump-
tions about the dynamic processes of state variables
that describe the state of the economy; the models
then portray the behavior of the term structure of
interest rates in such an economic environment. An
important aspect is that the market prices of risk are
specified explicitly in these models. Although the
models are rarely used directly in industry practice,
they offer economic insights into the dynamic evo-
lution of the term structure and often form the
foundation for the arbitrage models that have
found widespread applications in pricing interest
rate derivatives. In this section, the discussion of
one-factor models is followed by an examination of
their extensions to a multifactor setting, including
a general class of affine models.14
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One-Factor Models. One-factor models of the
term structure of interest rates are popular because
of their structural simplicity. Empirical evidence
has shown that almost 90 percent of the variation in
the changes of the yield curve is attributable to the
variation in the first factor, which is considered to
correspond to the level of the interest rate.15 Because
the first factor relates to the interest rate level, any
point on the yield curve may be used as a proxy for
it. For most one-factor models, the factor is gener-
ally taken to be the instantaneous short rate, r(t). 

The dynamics of the short rate are described
by the following stochastic differential equation:

dr(t) = µ(r)dt + σ(r)dW(t), (8)

which means that the change in the short rate can
be separated into a drift over the time period
(t, t + dt)—namely, µ(r)dt—and a random shock
represented by an increment of a Brownian motion,
dW(t), with an instantaneous volatility of σ(r). Note
that the interest rate itself is not a traded asset but
a discount bond is. The price of a discount bond,
P(t,T), is a function of the short rate r(t). The return
on the bond can be expressed as

(9)

where the expected return on the bond, µP(t,T), is
directly related to the drift, µ(r), and volatility, σ(r),
of the short rate and the volatility of the bond return
is related to σ(r).16 

The no-arbitrage condition applied to the set of
discount bond prices requires that

(10)

where λ(r) is the market price of risk. The market
price of risk is the required compensation in the
form of expected excess return over the risk-free
rate for bearing a unit of risk as measured by the
volatility of return. It should be the same for all
bonds in the economy (i.e., it is independent of
maturity date T). The specification of λ(r) differs
among models because it depends on additional
assumptions about investor preferences and pro-
duction technologies or endowment processes in
an economy.

Once the market price of risk has been deter-
mined, the process for the short rate under risk-
neutral probability measure Q can be expressed as

dr = [µ(r) – λ(r)σ(r)]dt + σ(r)dWQ(t) (11)

and the risk-neutral process for the bond price
becomes

(12)

Notice that under the risk-neutral measure, all
traded securities have their instantaneous expected
returns equal to the risk-free rate.17

Various one-factor models are constructed by
specifying the drift, µ(r), and volatility, σ(r), of the
short rate. The market price of risk, λ(r), is also
determined in a model. Then, prices of bond and
bond options can be obtained in the risk-neutral
valuation framework. For instance, because the
payoff for holding a discount bond with a face
value of $1 maturing at time T is receiving a certain
dollar at maturity, the price of the bond is simply

(13)

with the expectation taken under the risk-neutral
probability measure, Q. In general, the price for an
interest rate derivative security promising a payoff
flow g(r, τ, T) with t < τ < T is given by 

(14)

■ The Vasicek model. Vasicek was the first to
study the term structure with mean-reverting
short-rate dynamics. Although the model bearing
his name was initially constructed as a special
example to illustrate the arbitrage-free pricing
framework, it has since gained lasting influence
and popularity.

In the Vasicek model, the short rate follows an
Ornstein–Uhlenbeck (O–U) process as follows:

(15)

where κ measures the speed of mean reversion, 
is the long-run mean to which the short rate is
reverting, and σ is the instantaneous volatility of
the short rate; all are assumed constant. Because the
conditional distribution of r(t) following an O–U
process is Gaussian, the Vasicek model is also
referred to as a Gaussian model.

In this model, the market price of risk is a
constant [i.e., λ(r) = λ0]. Hence, the risk-neutral
process for the short rate is

(16)

with , which indicates that the
process for the short rate under the risk-neutral
measure is similar to the process in the real measure
except for a shift in the long-run mean. The price of
a discount bond is shown to be

P(t,T) = exp[A(τ) – B(τ)r(t)], (17)

where τ = T – t. Notice that the discount bond price
is exponentially linear in short rate r(t). Given the
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relationship between discount bond price and con-
tinuously compounded yield in Equation 1, this
implies that spot rates of all maturities, R(t,T), are
linear in r(t). The deterministic functions A(τ) and
B(τ) relate spot rates of varying maturities to the
short rate.18 This simple expression also makes it
easy to obtain formulas for prices of European
options on zero-coupon bonds in this model.19

The Vasicek model produces term-structure
shapes that can be either upward sloping, down-
ward sloping, or humped. The relative simplicity of
the model structure and the incorporation of mean
reversion in the interest rate dynamics have made
the model influential ever since it was first pub-
lished. The model is subject to generating negative
interest rates, however, because of the Gaussian
distribution. This characteristic is not necessarily a
problem for real interest rates, but it is troublesome
for modeling nominal rates and pricing interest rate
derivatives (see, e.g., Rogers 1996).

■ The Cox–Ingersoll–Ross model. In a general
equilibrium framework, Cox, Ingersoll, and Ross
constructed a term-structure model that uses a
square root process for the short rate:

(18)

The change in the short rate has a mean-reverting
drift and a variance that is proportional to the level
of the interest rate. This process has a reflecting
boundary at r(t) = 0 if . Hence, it can pre-
clude negative short rates.

The market price of risk in this model now
depends on the short rate because .
Under risk-neutral measure Q, the short-rate pro-
cess becomes

(19)

which now has a mean-reverting speed of
κ ′ = κ + λ 0  a n d  a  l o n g - r u n  m e a n  o f

. The price of a discount bond
with time to maturity of τ = T – t has the familiar
form of Equation 17.20 As in the Vasicek model,
the bond price in the CIR model is also exponen-
tially linear in the short rate. In fact, this charac-
teristic is common to a general class of affine
models, as will be discussed later. The CIR model
can also accommodate a variety of shapes for the
yield curve. Cox, Ingersoll, and Ross provided a
closed-form formula for pricing European options
on discount bonds.

Single-factor models, such as the Vasicek and
CIR models, describe the evolution of the term
structure of interest rates in a simple way. They
assume, however, that the dynamics of all bonds
are driven by the same source of random shocks

and, therefore, that spot rates are locally perfectly
correlated with each other. This assumption is
counterfactual; empirical studies have shown that
(1) correlations between various yields are different
from unity and (2) yields are highly correlated if
they have similar times to maturity but their corre-
lations are significantly reduced if they are in dif-
ferent segments of the yield curve. Furthermore,
empirical evidence suggests a more complex short-
rate volatility structure than either of these models
can accommodate (see, e.g., Chapman and Pearson
2001). This point is particularly important because
the value of an interest rate derivative critically
depends on the specification of the volatility struc-
ture. These problems highlight the necessity for
multifactor models of the term structure.

Multifactor Models. Multifactor models pos-
tulate that the evolution of the term structure of
interest rates is driven by the dynamics of several
factors and, therefore, the yields are functions of
these factors. These factors can be represented by
macroeconomic shocks or be related to the level,
slope, and curvature of the yield curve itself.
Empirical research (Litterman and Scheinkman
1991) has bolstered the intuition behind the multi-
factor models. In the last two decades, various
forms of multifactor models have been proposed
and studied. Here, a review of some representative
two-factor models is followed by discussion of the
general characteristics of affine models, in which
the yields are linear functions of the factors.

■ The Brennan–Schwartz model. Brennan and
Schwartz (1979) developed a two-factor model
based on the dynamics of two yields on the curve.
The two factors are represented by the short rate,
r(t), and the console yield, l(t).21 They are governed
by the following dynamics:

dr(t) = β1(r,l,t)dt + η1(r, l,t)dW1(t) (20a)

and

dl(t) = β2(r,l, t)dt + η2(r,l,t)dW2(t), (20b)

where β1(r, l,t) and β2(r, l,t) are the drift terms and
η1(r, l,t) and η2(r, l,t) are the volatility terms of,
respectively, the short rate and the console yield
and W1 and W2 are two correlated Brownian
motions. Note that the difference between the long
rate and the short rate proxies for the slope measure
of the term structure. So, this model should account
for both level and slope effects of the term structure.
A market price of risk is associated with each risk
factor. Once the functional forms of the market
prices of risk and the drift and volatility terms in
the processes for short and long rates are specified,
bond prices can be determined.
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The functional forms in this model can be spec-
ified in various ways. Generally, there are no
closed-form solutions for bond prices unless the
functional forms are specified to be affine in two
factors (to be discussed). For a model involving the
console yield, however, Dybvig, Ingersoll, and
Ross (1996) prescribed a stringent test for the
absence of arbitrage, namely, that the long forward
and zero-coupon rates can never fall. Whether any
specification of the Brennan–Schwartz model will
satisfy this requirement is not clear. Hogan (1993)
showed that some specifications of the Brennan–
Schwartz model may lead to an infinite long yield
with positive probability in finite time that is incon-
sistent with the no-arbitrage condition.

If we move away from the console yield and,
instead, model any two yields of finite maturities
in the same fashion as the short rate and console
yield are described in the Brennan–Schwartz
model, then we can generate a whole class of term-
structure models of practical significance. In partic-
ular, if we specify the functional forms to be those
in the Vasicek and CIR models, we can obtain the
prices of bonds and bond options in closed form, as
demonstrated in Langetieg (1980) and Chen and
Scott (1992).

■ The Fong–Vasicek model. Empirical studies
have revealed that the volatility of the changes in
the short rate is time varying and stochastic. To
explicitly model the stochastic changes in the inter-
est rate volatility and their effect on bond prices and
option values, Fong and Vasicek (1991) proposed a
two-factor extension of the Vasicek model in which
the O–U process for the short rate is modified to
include a stochastic variance that follows a square-
root process:

(21a)

and

, (21b)

where Brownian motions W1(t) and W2(t) are cor-
related. The market price of risk for each factor is
specified as  for i = 1, 2. Variables
κ1 and κ2 describe the speed at which the short rate,
r(t), and its variance, V(t), revert to their long-run
means, respectively,  and . The price of a dis-
count bond is exponentially linear in both r(t) and
V(t), although numerical methods need to be used
to obtain the exact prices for bonds and bond
options.

■ The Longstaff–Schwartz model. Another two-
factor model that describes the dynamics of the
short rate and its variance was developed by Long-
staff and Schwartz (1992) within the CIR general

equilibrium framework. In the Longstaff–Schwartz
model, two state variables, X and Y, represent the
state of the economy; each follows a square-root
process as in the CIR model:22

(22a)

and

, (22b)

where a, b, c, d, e, and f are specific parameters in the
model and dW1 and dW2 are independent Brownian
motions. Given the structure of the model, the short
rate, r(t), is linear in the state variables and so is its
instantaneous variance, V(t). From these relation-
ships, one can derive processes that depict the
dynamics of the short rate and its variance in the
same spirit of the Fong–Vasicek model.

The processes for the two factors, short rate
and its variance, are complicated in the Longstaff–
Schwartz model, but all the drift and variance
terms are linear in these two factors. Again, this
feature is characteristic of affine models. The price
of a zero-coupon bond is shown to be exponentially
linear in r and V; that is,

P(t,T) ∝  exp[C(τ)r + D(τ)V], (23)

where C(τ) and D(τ) relate the bond price to the state
variables, r and V, and can be obtained analytically.
Furthermore, one can derive the prices of European-
style bond options in closed forms, which permits
easy calibration with the aid of computers.

■ Multifactor affine models. The preceding
examples illustrate a variety of two-factor models.
In practice, the number of factors needed in a model
to effectively price and hedge interest rate deriva-
tives may be more than two. Litterman and
Scheinkman found three factors (corresponding to
the level, slope, and curvature of the yield curve)
that drove the term structure in the Treasury mar-
ket in the 1980s, and Longstaff, Santa-Clara, and
Schwartz (2000) proposed four significant factors
at play in the LIBOR market in recent years. 

Despite the increased complexity, the addition
of more factors does not much change the general
structure of multifactor models. This subsection
focuses on affine models in which yields are linear
functions of the factors. This class of models has
received a lot of attention in recent years because it
includes many popular models and offers superior
tractability.23

Suppose that in a multifactor model, there are
N factors, X1, X2, . . ., XN. Let X denote the vector
(X1, X2, . . ., XN)′ that evolves over time following a
multidimensional diffusion process:

dX(t) = µ[X(t)]dt + σ[X(t)]dW(t), (24)

dr t( ) κ 1 r r t( )–[ ] dt V t( )dW1 t( )+=

dV t( ) κ2 V V t( )–[ ] dt η V t( )dW2 t( )+=

λ i t( ) λ i V t( )=

r V

dX a bX–( ) c XdW1+=

dY d eY–( ) f YdW2+=
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where µ[X(t)] is an N-dimensional vector, σ[X(t)] is
an N × N matrix, and W(t) is a vector of N indepen-
dent Brownian motions.

Many of the factor models in the literature fall
into a general class of affine models (see Duffie and
Kan 1996). In an affine model, the instantaneous
short rate is a linear combination of the factors: 

(25)

where the δ’s are constant coefficients. The drift and
variance–covariance matrix for the factors are also
affine functions (i.e., linear functions up to a deter-
ministic term) of the factors, the X(t)’s. Therefore,
one can generally specify µ[X(t)] and σ[X(t)] as

(26a)

and

(26b)

where θ is a constant vector representing the long-
run mean that X(t) is reverting to, K

~
and Σ are

N × N matrixes that may be nondiagonal and asym-
metrical, and S(t) is a diagonal matrix with its ith
diagonal element given by

[S(t)]ii = αi + βi′X(t). (27)

Hence, both the drift, µ[X(t)], and the conditional
variance–covariance matrix, σ[X(t)]′σ[X(t)], are
affine in X(t).

The elements of X(t) in this setup may be
macroeconomic variables, as in the Longstaff–
Schwartz model where the short rate and its vari-
ance are linear in these state variables. Indeed, Cox,
Ingersoll, and Ross proposed a multifactor exten-
sion of their model in a similar form as presented
here, which was further studied by Chacko and Das
(1999), Chen and Scott, Duffie and Singleton, and
Pearson and Sun (1994). Similar extensions can also
be applied to the Gaussian model of Vasicek (see
Langetieg). Duffie and Kan showed that, the zero-
coupon bond prices in these models are given by

P(t,T) = exp[A(τ) – B(τ)′X(t)], (28)

with τ = T – t, where A(τ) and B(τ) satisfy a set of
ordinary differential equations (ODEs) with proper
initial conditions. Although closed-form solutions
to this set of ODEs are attainable only in special
cases, solving the ODEs numerically is generally
easy.

Note that the formulation presented here can
be simply framed in the risk-neutral measure.
Then, if the market price of risk is assumed to be

, (29)

the processes for the state variables in the true
probability measure, where empirical measure-
ments are made, will also follow affine diffusions.
This step will facilitate empirical estimation of
these models.24 Because the affine processes are
specified for the generic state variables and the spot
yields are linear in these state variables (hence,
become proxies for these state variables), this type
of model was labeled an “AY model” (for “affined
yields”) by Dai and Singleton (2000).

Another set of multifactor models focuses on
the short rate with a stochastic long-run mean, or
“central tendency,” and/or a stochastic volatility.
This type of model generally takes the following
representation:

, (30a)

, (30b)

and

, (30c)

where θ(t) is the long-run mean; ν(t) relates to the
short-rate volatility; α, β, µ, ν, and η are constant
coefficients; γ generally takes a value of 0 or 1/2;
and W’s are Brownian motions that may be corre-
lated. This type of model has been studied in vari-
ous forms (and with different γ’s) by Chen (1996),
Balduzzi, Das, Foresi, and Sundaram (1996), and
Fong and Vasicek. Because in these models the
processes are specified for various aspects of the
short rate, the short rate is affine (linear) in these
variables. Therefore, this type of model was labeled
an “Ar model” by Dai and Singleton. Dai and Sin-
gleton found correspondence between certain
forms of AY models and Ar models. They used this
identification to empirically test specifications of
affine term-structure models.

In addition, the affine models may accommo-
date jump components in the processes for the
state variables. Earlier models incorporating jump-
diffusion processes include Ahn and Thompson
(1988) and Das and Foresi (1996). Duffie and Kan
formally specified the restrictions on the jump-
diffusion processes in order to maintain the expo-
nentially affine structure for bond prices. Chacko
and Das explicitly calculated prices of interest rate
derivatives within this framework, and Duffie,
Pan, and Singleton (2000) provided a general treat-
ment of a class of transforms in the setting of affine
jump-diffusion processes that is readily applicable
to valuing fixed-income securities. Econometric
modeling of jumps in the framework of affine
models can be found in Das (forthcoming) and
Piazzesi (2001).
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Arbitrage Models
The factor models discussed so far may be derived
from some equilibrium framework, which would
preclude the existence of arbitrage in the specified
economy. These models are generally estimated to
explain the observed historical patterns in the
dynamics of the term structure, which may, in turn,
help analysts understand the dynamics of the econ-
omy. This approach is not practical, however, for
pricing interest rate derivatives because empiri-
cally fitted models using historical data will not
guarantee that the model term structure matches
the current term structure obtained from market
prices. If the term structures differ, as they almost
always do, a derivatives trader who uses the model
instead of the prevailing term structure cannot ade-
quately hedge derivative positions with underly-
ing securities. For this reason, significant effort has
been expended to make a factor model match the
current yield curve before it is used to price options.

Matching the Current Yield Curve. One way
to match the current term structure is to make the
coefficients in a factor model vary deterministically
with time. Cox, Ingersoll, and Ross first discussed
this possibility in the context of the CIR model, and
Dybvig (1997) further investigated pricing of inter-
est rate derivatives in this framework. This type of
model takes the market prices of bonds (hence, the
current term structure) as given and prices interest
rate derivatives accordingly. Therefore, the models
will not spot mispricing in the underlying bonds
themselves but are useful for pricing derivatives in
the same spirit as the Black–Scholes framework for
stock options. This section discusses three of the
most popular models. They are popular because of
the simple intuition behind them and the easy cal-
ibration they permit. Although multifactor imple-
mentation is often preferred and used, the one-
factor versions of these models are presented here
for clarity.

■ The Ho–Lee model. Starting from the
premise that the short rate follows a random walk,
Ho and Lee recognized that allowing the drift of
the short-rate process to be time varying would
accommodate an essentially arbitrary specification
of the initial term structure. That is, if one assumes
the short-rate process to be

dr = θ(t)dt + σdW, (31)

where the instantaneous standard deviation of the
short rate, σ, is constant, then matching the initial
term structure to the market yield curve will help
pin down the drift, θ(t).

In this continuous-time version of the Ho–Lee
model, the price of a zero-coupon bond is

P(t,T) = eA(t,T)–r(t)(T–t), (32)

where A(t,T) is a deterministic integral of θ(t). Then,
matching the current yield curve dictates that

, (33)

where f (0,t) is the instantaneous forward rate for
time t seen at time zero.

Within this model, prices of European options
on discount bonds can be easily obtained in closed
form. For example, the price at time zero of a call
option that expires at time τ on a discount bond
maturing at time T is

FP(0,T)N(d) – KP(0,τ)N(d – σP), (34)

where F is the principal of the bond, K is the strike
price of the option, and parameters d and σP are
given as follows:

(35a)

and 

. (35b)

Note that Equation 34 is similar to the Black–
Scholes formula for stock options. Here, P(0,τ) and
P(0,T) are market prices of discount bonds matur-
ing at, respectively, times t and T. American-style
options can be evaluated through a binomial tree
implementation.25

■ The Hull–White model. Although the Ho–
Lee model provides an exact fit to the current yield
curve and is straightforward to implement, it does
not explicitly account for mean reversion in the
short rate. In addition, the volatility structure
implied by the model is flat for all rates. To counter
these problems, Hull and White (1990) extended
the Vasicek model to match the initial term struc-
ture. One version of their extended Vasicek model
gives the short-rate dynamics as

dr = [θ(t) – κr]dt + σdW. (36)

Equation 36 includes the Ho–Lee model as a special
case when κ = 0. Bond prices at time t are then given
by

P(t,T) = eA(t,T)–B(t,T)r(t), (37)

where A(t,T) is directly related to the time-varying
drift function, θ(t). Matching the current yield
curve entails calibrating θ(t) to be

. (38)

The volatility structure in the Hull–White
model is determined by both κ and σ and has richer
variations than that in the Ho–Lee model. Specifi-
cally, the volatility at time t of P(t,T) is
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(39a)

The instantaneous standard deviation at time t of
the spot rate R(t,T) is

(39b)

and the volatility of forward rate f(t,T) is σe–κ(T–t).
These variations in volatility structure represent a
step toward realism, but matching them with
observed volatilities is often still difficult.

In the Hull–White setup, prices of European
options on discount bonds can be obtained in an
analytic form similar to that in the Ho–Lee model.
More commonly, Hull–White-type models are
implemented on a trinomial tree, which greatly
facilitates the numerical valuation of American-
style options.26

■ The Black–Derman–Toy model. In an effort to
fit not only the current bond prices but also the
current volatility structure, Black, Derman, and
Toy (1990) proposed building a binomial tree that
is equivalent to the following process:

, (40)

where σ′(t) is the derivative of σ(t) with respect to
t. Here, short rate r(t) has a lognormal distribution;
thus, this model avoids the problem of possible
negative rates that is present in both the Ho–Lee
and Hull–White models. The time-varying (but
deterministic) function θ(t) in the drift and volatil-
ity σ(t) are calibrated to match the initial yield curve
and volatility structure.

One issue arising in the Black–Derman–Toy
model is that the mean-reversion speed for the
short rate, σ′(t)/σ(t), is directly tied to the volatility
structure. This coupling is artificial and may
impose the unwarranted constraint of simulta-
neously matching the current yield curve and term
structure of volatilities. To rectify this problem,
Black and Karasinski (1991) generalized this model
to the following form:

d lnr(t) = [θ(t) – a(t) lnr(t)] dt + σ(t)dW(t), (41)

where a(t) is an independent deterministic function
of time. The implementation of this model is done
through a trinomial-tree-building procedure. Bliss
and Ronn (1998) provided an application of this
model to examine the optimal call policies and
implied volatilities of callable U.S. T-bonds.

The Heath–Jarrow–Morton Approach.
Heath, Jarrow, and Morton took the instantaneous
forward rates as exogenously specified to derive,
using the martingale measure implied by the for-
ward rates, contingent-claim prices. This approach

is equivalent to taking the dynamics of bond prices
as given and pricing other interest rate derivatives
on the basis of the no-arbitrage condition, in much
the same spirit as the Ho–Lee and Hull–White
models, as well as that of the Black–Scholes option-
pricing model. Just as the Black–Scholes model
assumes that the stock price follows a geometrical
Brownian motion, the HJM framework specifies
the dynamics of forward rates as

, (42)

where f (t,T) is the instantaneous forward rate
maturing at time T measured at time t and α(t,T)
and σi(t,T) are stochastic functions satisfying nec-
essary regularity conditions. N is the number of
stochastic factors that are driving the evolution of
the forward curve. Alternatively, the forward pro-
cess may be expressed in an integral form as

(43)

for 0 ≤ t ≤ T. Here, f (0,T) represents the initial
(implied) market forward curve.

Unlike stocks, forward rates are not tradable
assets. Rather, the initial forward curve is obtained
from a set of traded bond prices. Because of the
relationship between bond price and forward rate,
set forth in Equation 5, one can also derive the
process for bond prices. The no-arbitrage condition
and the assumption of a complete market27 then
imply that (1) the market prices of risk, λi(t), are
uniquely determined by and contained in the mar-
ket prices of bonds and (2) there is a specific rela-
tionship between the drift and the volatility of the
forward-rate process. That is,

. (44)

Therefore, the drift of the forward rate is deter-
mined entirely by its volatility structure under both
the physical measure and the risk-neutral
measure.28

The specification of an HJM model depends
critically on the specification of the volatility struc-
ture of forward rates. Consider a simple one-factor
example (N = 1) in which we assume that σ1(t,T) = σ
is a constant (i.e., the volatility structure for forward
rates is flat). Then, Equation 44 implies that
α(t,T) = –σλ1(t) + σ2(T – t). Under the risk-neutral
measure, the instantaneous forward rate evolves as

. (45)
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The bond price process becomes

, (46)

where r(t) = f (t,t) is the short rate. Note that Equa-
tion 46 corresponds to the specification of the Ho–
Lee model discussed previously.

Beyond a few examples like this one, however,
in which the volatility structure of forward rates or
bond returns is unrealistically simplistic, this
approach does not produce closed-form formulas
for interest rate derivative prices. Even numerical
procedures can be complicated because, with a gen-
eral form for volatility functions σi(t,T), the evolu-
tion of the bond price depends on the whole history
of interest rates. This path dependency makes the
implementation of these models difficult. On the
one hand, the tree structure used in many numeri-
cal procedures becomes nonrecombining, or
“bushy.” This type of bushy tree quickly explodes
in size, which poses problems for evaluating long-
term contracts. On the other hand, traditional
Monte Carlo simulation techniques are generally
inept in dealing with American-style options.29

To circumvent this problem, a class of Mark-
ovian HJM models has been proposed that impose
more structure on the volatility functions (Ritchken
and Sankarasubramanian 1995; Inui and Kijima
1998). Specifically, if one restricts the volatility
functions, σi(s,t), to solve

, (47a)

where κi(t) is an arbitrary but deterministic func-
tion, and if one defines 

, (47b)

then the processes for short rate r(t) and for φi(t)
become jointly Markovian. Thus, one can build a
tree structure that is once more recombining, as
desired in numerical implementations.

It is not surprising that the models discussed
previously, all of them Markovian, are special cases
in this class of specification. For example, if we
assume that κi(t) = κi and σi(s,s) = σi, then this class
of Markovian HJM models reduces to the Hull–
White model. When κ is zero, the Ho–Lee model is
recovered.

Recent Advances
The development of the HJM framework for term-
structure models stimulated tremendous interest
and effort in finding practical ways to implement
the HJM models to effectively price derivative
products. These recent activities attempt to address

problems associated with various aspects of the
HJM models. 

For instance, negative interest rates are not
a priori excluded because, not only are Gaussian
models admissible in the HJM framework, but cal-
ibrating parameters to fit the current term structure
can result in losing the positivity of interest rates.30

Recognizing this problem, Flesaker and Hughston
(1996) proposed a formulation based on specifying
a family of positive martingales. This elegant con-
struction of interest rate dynamics ensures positive
rates and is consistent with the HJM framework.
Remarkably, various special cases of this model can
be formulated for which the bond option prices, as
well as the prices of caps and swaptions, can be
derived analytically in the Black–Scholes-type for-
mulas.31

This section discusses two recently proposed
classes of models—market models, which deal
directly with observable market rates, and infinite-
dimensional models, which appear to model the
correlation structure properly in a parsimonious
way. 

Market Models. The models popularly known
as market models deal directly with observable mar-
ket rates, such as LIBOR or swap rates of finite
maturities. In these models, forward rates of finite
durations are assumed to be (conditionally) lognor-
mally distributed. With properly matched volatili-
ties, this approach recovers the widely used Black
(1976) model in an internally consistent frame-
work.32 This class of models has found widespread
application in the industry.

On the one hand, the HJM approach exoge-
nously specifies the dynamics for instantaneous
forward rates with their current term structure and
volatility structure as inputs to price interest rate
options. This approach poses a problem for practi-
cal implementation because the current term struc-
ture of instantaneous forward rates, f(t,T), and its
volatility structure are inherently unobservable.
The differential relationship between f(t,T) and
P(t,T) makes a direct translation from observed
bond prices to instantaneous forward rates diffi-
cult. One may use proxies, such as one-month or
three-month T-bill or LIBOR yields or their forward
rates, but these proxies can be misleading (Chap-
man, Long, and Pearson 1999). On the other hand,
although the lognormal process is popular because
it ensures a positive interest rate process and
enables a closed-form formula for option prices, it
is not suitable for instantaneous forward rates; con-
tinuous compounding will render an explosion in
bond prices, violating the no-arbitrage conditions. 
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The class of market models developed by
Brace, Gatarek, and Musiela (BGM), Jamshidian
(1997), and Miltersen, Sandmann, and Sonder-
mann (MSS) has emerged to overcome these prob-
lems. In their various representations, the models
are expressed in terms of forward rates with finite
durations in the LIBOR or swap market, named
“market variables.” These models also lend justifi-
cation to the market practice of using the Black
model to price caps and floors or swaptions.

To see how these models work, consider a one-
factor rendition and denote the simply compounded
forward rate for a loan between time T and time
T + δ set at time t as F(t,T, δ), which is determined
by two discount bond prices P(t,T) and P(t,T + δ)
through33

. (48)

The market models postulate that the process for
F(t,T,δ) is

, (49)

which is initiated with the observed term structure
of interest rates at t = 0:

. (50)

As long as δ ≠ 0, this specification will not cause the
forward-rate explosion.34

Clearly, once the selected nonredundant for-
ward rates are described by lognormal processes,
other rates that can be replicated by these basis rates
will not be described by lognormal processes
because the sum of lognormal variables does not
follow a lognormal distribution. Both the BGM and
MSS models calibrate to the LIBOR market with
F(t,T,δ) as the forward LIBOR rate, but the model of
Jamshidian (1997) also calibrates to the swap mar-
ket, with F(t,T,δ) being the forward swap rate.
Because swap rates may be viewed (approximately)
as weighted averages of forward LIBORs, if forward
LIBORs are lognormally distributed, swap rates
cannot be. Thus, although these different represen-
tations of the market model share a similar structure,
they cannot be simultaneously compatible with
each other. Therefore, one has to choose a represen-
tation by considering the context of the valuation.35

It can be shown that in the LIBOR market,
under the forward measure with P(t,T + δ) as the
numeraire, F(t,T,δ) is a martingale:

, (51)

where dWT+δ(t) is a Brownian motion under this
forward measure indexed by maturity date T + δ.

This immediately yields a formula for the price of
a caplet with strike rate L at time t, CPLt:

CPLt = δP(t,T,δ)[F(t,T,δ)N(d+) – L N (d–)], (52)

where

(53a)

and 

. (53b)

Equation 52 is exactly the Black formula commonly
used in industry practice if σ(t,T,δ) matches the
(appropriately scaled) cap volatility.

The market models, especially their multi-
factor versions, have found widespread applica-
tion in pricing interest rate derivative products
because they make direct connections between
option prices and “market” rates (such as LIBOR
and swap rates) and justify the popular use of the
Black formula with clear guidance for setting
appropriate variance terms. These models are con-
sistent with the general framework of the HJM
approach, but the simplicity in structure of the
market model results in closed-form solutions to
cap/floor or swaption prices and makes it easier to
price and hedge more complicated derivatives,
such as barrier caps, chooser caps, and flexi caps.
One caveat for users of market models is that the
model is only as good as its assumption of the
(finite-duration) forward-rate process, the validity
of which is still an open empirical question.

Infinite-Dimensional Models. One of the
most important problems in modeling the term
structure and pricing interest rate derivatives is to
properly account for the correlation structure
between rates of different maturities. This problem
directly affects hedging strategies. In the multifac-
tor models discussed previously, the correlation
structure is determined by a limited number of
factors, which may not reflect the natural relation-
ship between bonds in a similar maturity segment.
This problem is addressed by a class of infinite-
dimensional models, referred to sometimes as
“random-field” or “stochastic-string” models,
which show considerable promise in properly and
parsimoniously modeling the correlation structure. 

The models in the HJM framework are pur-
ported to be consistent with the initial term struc-
ture. But if the parameters are fixed at presently
calibrated values, these models are not guaranteed
to be consistent with future innovations to the
term structure. In fact, implementation of these
models is subject to continuous recalibration of the
model parameters, even though the a priori
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assumptions of the models call for deterministic
coefficients. Therefore, there seems to be inherent
inconsistency between the assumptions of the
models and their practical application. Part of the
reason for this inconsistency may be that extant
term-structure models have the same set of shocks
affecting all forward rates, which constrains the
correlations between bond prices of different
maturities and limits the set of admissible shapes
and dynamics of the yield curve. The random-field
models (Kennedy 1994 and 1997 and Goldstein) or
stochastic-string models (Santa-Clara and Sor-
nette) were developed to address this problem.

In these models, each instantaneous forward
rate is driven by its own shock, ordered by matu-
rity, and each of these shocks is imperfectly corre-
lated with shocks to other instantaneous forward
rates of different maturities. The dynamics of
instantaneous forward rates, similarly exoge-
nously specified as in the HJM models, is defined as

df (t,T ) ≡ µT(t)dt + σT(t)dZT(t). (54)

The shock, or innovation, dZT(t), indexed by matu-
rity date T,36 generalizes a one-dimensional Brown-
ian motion to a two-dimensional Brownian field (or
string shock).37 (Note that a model so constructed
has infinite dimensions because each point on the
forward curve is driven by its own shock.) The
seemingly simple notational change in the stochas-
tic disturbance makes an important difference
because dZT(t) not only denotes the differential
magnitude of shocks to different points on the for-
ward curve but also embeds a correlation structure
between these shocks. For example, one could have
the following correlation structure between two
string shocks to two forward rates indexed by T1
and T2:

. (55)

This type of construction enables the model to
match the dynamics of the forward curve at all
times, which is not the case for the traditional mul-
tifactor models. In the traditional models, if the
number of bonds is more than the number of factors,
a calibration is necessary at each time to fit the term
structure as closely as possible. 

An infinite-dimensional model does not, how-
ever, have an infinite number of factors. Although
a semantic dispute about the difference between a
“factor” and a “source of random shocks” is possi-
ble, the preceding example demonstrates that a rich
and plausible correlation structure can be gener-
ated in an infinite-dimensional model without a
large number of parameters to estimate (as in a
traditional multifactor model).

Under the risk-neutral measure, Q, the process
for f (t,T) can be written as

(56)

with a correlation structure, represented by a func-
tion c(•):

. (57)

It can be shown that, similarly to the HJM models,
the risk-neutral drift is completely determined by
the volatility and correlation structure, namely,

. (58)

Note that when c(•) is unity, this model recov-
ers the original HJM formulation. So, this infinite-
dimensional formulation captures the correlations
between forward rates (hence, bond prices) of dif-
fering maturities in a parsimonious way. The
model will thus improve the effectiveness of hedg-
ing strategies that use comparable bonds.

Pricing bond options in the infinite-
dimensional models is surprisingly straight-
forward. If the volatility and correlation structures
are deterministic, as in Kennedy’s (1994, 1997)
Gaussian random-field model, the bond prices are
distributed lognormally and the option prices can
be written in a Black–Scholes form. If the volatility
and/or correlation structures are stochastic,
closed-form formulas are not attainable but numer-
ical calculation of the option prices is feasible. In
particular, one may apply the technique of charac-
teristic functions fashioned by Heston (1993) to
express the option prices in an integral form to
facilitate fast numerical calculation, as demon-
strated in Goldstein. Santa-Clara and Sornette used
their stochastic-string model to price the delivery
option embedded in long-bond futures contracts.
In addition, Longstaff, Santa-Clara, and Schwartz
(1999) compared the valuation and optimal exer-
cise of American-style swaptions in a multifactor
stochastic-string model with the standard
one-factor and multifactor models and found that
the standard models significantly undervalue the
American-style swaptions and lead to suboptimal
exercise strategies and biased hedge ratios.

Conclusion 
Tremendous advances have been made in recent
years in the development of term-structure models
and their applications in pricing interest rate deriv-
ative products. The progress is rooted in a deepen-
ing understanding of the financial markets by
academic researchers, increasing knowledge of sto-
chastic processes, ready availability of computa-
tional power, and constant innovation in financial
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t( ) dZT2
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ρ T1 T2––
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products in the financial industry. This article
aimed to provide a coherent introduction to the
major recent developments in modeling the term
structure and pricing of fixed-income derivatives.
The breadth and sophistication of these models
require much more space, however, than afforded
by an article. I have not even touched upon impor-
tant issues of estimation, calibration, and numerical
implementation of these models, some of which
issues are discussed elsewhere.38

On the one hand, the models presented here
have some failings. They assert, either explicitly or
implicitly, that markets are complete—that is, that
the risks associated with interest rate derivatives
are spanned by bonds in the market and hence can
be hedged by bonds in the market. Jumps and
stochastic volatility in the interest rate process cast
doubts, however, on this assertion. In fact, Collin-
Dufresne and Goldstein (2001) provided evidence
from the swap market that fails to support the
assertion. If their finding proves to be pervasive in

further empirical studies, models for derivative
pricing that go beyond the established pricing-by-
replication approach are needed.

On the other hand, the implementation of
term-structure models has stimulated further
development of models that are (1) more directly
applicable with observed rates, as in the case of the
market models, and (2) more internally consistent
through the incorporation of an adequate correla-
tion structure, as in the case of the infinite-
dimensional models. Future progress in merging
these approaches39 and in developing new ways of
thinking about these issues will certainly yield
fruitful rewards, both intellectual and financial.

Notes 

1. Tuckman (1995) provides an accessible treatment; the
approaches of Hull (2000), Hunt and Kennedy (2000), James
and Webber (2000), Martellini and Priaulet (2001), Musiela
and Rutkowski (1997), and Rebonato (1998), among others,
require varying degrees of mathematical sophistication.
Earlier overviews of term-structure models include Back
(1996), Flesaker and Hughston (1997), Ho (1995), Hughston
(1996), and Marsh (1995).

2. Although term-structure modeling is a highly mathemati-
cal undertaking, I have tried to focus on the intuition by
keeping only the necessary mathematical formulas in the
main text and placing descriptive discussions and the more
technical content in footnotes.

3. The term structure of interest rates is also called “the yield
curve of zero-coupon bonds.” With this correspondence in
mind, I use “term structure” and “yield curve” interchange-
ably in this article. In market jargon, however, the yield
curve may refer to yields to maturity of on-the-run coupon
bonds. The next section specifies more exactly the definition
of term structure discussed in this article.

4. A straight bond is a bond with fixed coupon and principal
payments and without any optional provisions.

5. The empirical estimation of term-structure models is dis-
cussed by Chapman and Pearson in this issue of the Finan-
cial Analysts Journal.

6. As Back pointed out, this classification may be a misuse of
terms, because equilibrium models like the CIR model do
not admit arbitrage in the economic environment specified
in the model. Moreover, arbitrage models, such as the Hull–
White (1990) model, are constructed by making the coeffi-
cients in equilibrium models (e.g., the Vasicek model) time
varying.

7. I do not discuss bond characteristics, such as duration and
convexity, or portfolio strategies, such as immunization.
For descriptions of the state of the art in both cases, inter-
ested readers can consult the finance textbooks or Fabozzi
and Fong (1994).

8. An introduction to stochastic calculus and continuous-time
formulation in finance can be found in the appendixes of
previously cited books or in, among others, Karatzas and
Shreve (1991) and Baxter and Rennie (1996).

9. Since 1984, investors have been able to hold strips of indi-
vidual coupons and principals of U.S. T-bonds and trade
them separately. These securities are called STRIPS (for
“separate trading of registered interest and principal of
securities”) and behave like zero-coupon bonds. After 1987,
coupon bonds could also be reconstructed from STRIPS.

10. In fact, the recently developed market models are specifi-
cally designed to describe the term structure of LIBORs or
swap rates, as discussed in the “Market Model” section of
this article. For a discussion of the term structure of swap
spreads, see He (2000).

11. I am not considering the effects of trading costs, liquidity,
margin constraints, and/or other market frictions.

12. A European option can be exercised only at the end of its
life, on its expiration date. 

13. The risk-neutral measure can be shown to be an equivalent
martingale measure with respect to the subjective real-
world probability measure. Two probability measures are
said to be equivalent if an event having a nonzero probabil-
ity of occurring under one measure is also to occur under
the other measure, albeit with a different nonzero probabil-
ity. The risk-neutral valuation methodology is perhaps the
most important concept in derivative pricing, but it is diffi-
cult to grasp at first. Tuckman provided an excellent and
accessible exposition of this methodology through a bino-
mial tree construction to price a call option on a bond.

14. An affine model is one in which zero-coupon yields are
linear with respect to underlying state variables (see Duffie
and Kan 1996). 

15. See Chapman and Pearson (2001) for a detailed discussion.
16. By Ito’s Lemma from stochastic calculus, µP(t,T )P(t,T ) =

[(∂P/∂t) + (∂P/∂r)µ (r)] + (1/2)(∂2P/∂ r2) σ2(r) and
σP(t,T )P(t, T ) = (∂P/∂r)σ(r).

I would like to thank Keith Brown, David Chapman,
Dan Chen, Lane Hughston, Patrick Jaillet, Ehud Ronn,
Stathis Tompaidis, and Kehong Wen for their helpful
comments.
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17. By applying Ito's Lemma, the bond price, P(t,T), satisfies a
partial differential equation: (1/2)(∂2P/∂r2)σ2(r) + (∂P/
∂r)[µ(r) – λ(r)σ(r)] + (∂P/∂t) – rP = 0, with boundary condi-
tion P (T, T) = 1. This approach can be used to solve for other
contingent-claim prices, including prices of fixed-income
derivatives.

18. The mathematical expressions for A(τ) and B(τ) in the
Vasicek model are

and .

19. Jamshidian (1989) provided a formula for pricing European
options on zero-coupon bonds as well as on coupon bonds
in the Vasicek model. Given that the process for the bond
price is conditionally lognormal, the price of a European
option has a Black–Scholes-like formula. The time-0 price
of a call option on a discount bond maturing at T and
expiring at T′ < T is given as FP(0,T)N(d+) – KP(0,T′ )N(d–),
where F is the face value of the bond, K is the strike price, 

 and

20. The expressions for A(τ) and B(τ) in the CIR model are 

 and

 where

21. A console is a bond of infinite maturity that pays out
periodic coupons. It can be thought of as an annuity that
never matures. In the Brennan–Schwartz model, the console
bond pays a continuous coupon at the annual rate of c and
l(t) is the continuously compounded console yield, some-
times called “the long yield.”

22. The model actually has three state variables, but one of them
is not relevant to the dynamics of the short rate.

23. Another class of models that has received attention recently
is the quadratic models, in which yields are quadratic
functions of the factors. Longstaff’s (1989) nonlinear term-
structure model, its modification by Beaglehole and
Tenney (1992), and Constantinides’ (1992) SAINTS model
for nominal term structure are special cases. Ahn, Dittmar,
and Gallant (forthcoming) characterize and empirically
estimate some of these models.

24. See Chapman and Pearson for a discussion of recent studies
concerning the choice of market price of risk and the empir-
ical performance of affine models.

25. American options can be exercised on any business day
after purchase through the expiration of the option.

26. See Hull for an excellent exposition of the models and
references for implementing them.

27. The complete market assumption effectively states that all
payoffs in the market can be replicated by combinations of
traded securities. These conditions imply the existence of a
unique equivalent martingale measure. This equivalent
martingale measure, Q, can be constructed from a set of N

different discount bonds. Heath, Jarrow, and Morton
assumed that there are N-basis bonds and that other bonds
are priced as linear combinations of these basis bonds. Here,
the market prices of risk, λi, need not be directly specified
because the information is already contained in the market
prices of the N-basis bonds.

28. Under risk-neutral measure Q, 

 where

 Then,

29. Some recent papers tackle the problem of valuing American
options by using the Monte Carlo simulation in innovative
ways. See, for example, Longstaff and Schwartz (2001).

30. Note that in the CIR model, interest rates remain positive
as long as 2κθ(t) > σ2. Meeting this restriction cannot be
guaranteed when θ(t) is fitted to match current bond prices.

31. The positive-interest-rate approach of Flesaker and Hugh-
ston has a close connection to the “potential” method of
Rogers (1997). For further details, see Flesaker and Hugh-
ston (1996, 1997), Hunt and Kennedy, Musiela and Rut-
kowski, Rutkowski (1997), and Jin and Glasserman (2001).

32. The Black model is based on the model Fischer Black pro-
posed for valuing European options on commodity futures
contracts. In valuing interest rate derivatives, such as bond
caps and swaptions, the model assumes that the underlying
bond price or interest rate at the option expiration is distrib-
uted lognormally and the expected future price or rate is its
forward price or rate. A Black–Scholes-type formula is then
obtained for various European bond options, including
caps, floors, and swaptions.

33. Note that Equation 3b defines a continuously compounded
forward rate, f(t,T,δ).

34. The existence of a unique nonnegative solution to the sto-
chastic differential equation (Equation 49) under suitable
regularity conditions is proven in Brace, Gatarek, and
Musiela. Miltersen, Sandmann, and Sondermann showed
that the lognormal assumption for forward rates of finite
maturities is consistent with the HJM framework for a
specific choice of volatility structure.

35. Jamshidian (1997) also discussed the valuation of options
that depend on both LIBOR and swap rates, such as spread
options and LIBOR trigger swaps, in the framework of the
market model.

36. In Santa-Clara and Sornett, the shocks are indexed by time-
to-maturity, T – t. Although a formulation that uses time-
to-maturity indexing has some advantages, I kept the matu-
rity indexing to keep notations in this article consistent.

37. “Brownian field” and “string shock” refer to the same con-
struction of two-dimensional stochastic processes. Santa-
Clara and Sornette provided a general characterization of
the properties that these processes need to satisfy and
showed a few admissible and nonadmissible examples.
Goldstein demonstrated different constructions of these
processes to meet various smoothness requirements for for-
ward curves. A rigorous treatment of infinite-dimensional
models is in Filipovic’.

38. For example, Chapman and Pearson discuss empirical
issues relating to short-rate dynamics and the estimation of
term-structure models.

39. Recent work by Longstaff, Santa-Clara, and Schwartz rep-
resent such an effort.
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