Task Data Offloading and Resource Allocation in Fog Computing with Multi-Task Delay Guarantee

Mithun Mukherjee, Suman Kumar, Qi Zhang, R. Matam, Constandinos X. Mavromoustakis, Yunrong Lv, George Mastorakis
2019 IEEE Access  
With the emergence of delay-sensitive task completion, computational offloading becomes increasingly desirable due to the end-user's limitations in performing computation-intense applications. Interestingly, fog computing enables computational offloading for the end-users towards delay-sensitive task provisioning. In this paper, we study the computational offloading for the multiple tasks with various delay requirements for the end-users, initiated one task at a time in end-user side. In our
more » ... nario, the end-user offloads the task data to its primary fog node. However, due to the limited computing resources in fog nodes compared to the remote cloud server, it becomes a challenging issue to entirely process the task data at the primary fog node within the delay deadline imposed by the applications initialized by the end-users. In fact, the primary fog node is mainly responsible for deciding the amount of task data to be offloaded to the secondary fog node and/or remote cloud. Moreover, the computational resource allocation in term of CPU cycles to process each bit of the task data at fog node and transmission resource allocation between a fog node to the remote cloud are also important factors to be considered. We have formulated the above problem as a Quadratically Constraint Quadratic Programming (QCQP) and provided a solution. Our extensive simulation results demonstrate the effectiveness of the proposed offloading scheme under different delay deadlines and traffic intensity levels. INDEX TERMS 5G and beyond, computation offloading, mobile edge computing, fog computing, resource allocation, offloading decision. VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
doi:10.1109/access.2019.2941741 fatcat:7g7taqv6lnapnltvxt4xb4sap4