Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells

Ragip A. Pala, John S. Q. Liu, Edward S. Barnard, Daulet Askarov, Erik C. Garnett, Shanhui Fan, Mark L. Brongersma
2013 Nature Communications  
Non-periodic arrangements of nanoscale light scatterers allow for the realization of extremely effective broadband light-trapping layers for solar cells. However, their optimization is challenging given the massive number of degrees of freedom. Brute-force, full-field electromagnetic simulations are computationally too time intensive to identify high-performance solutions in a vast design space. Here we illustrate how a semi-analytical model can be used to quickly identify promising
more » ... spatial arrangements of nanoscale scatterers. This model only requires basic knowledge of the scattering behaviour of a chosen nanostructure and the waveguiding properties of the semiconductor layer in a cell. Due to its simplicity, it provides new intuition into the ideal amount of disorder in high-performance light-trapping layers. Using simulations and experiments, we demonstrate that arrays of nanometallic stripes featuring a limited amount of disorder, for example, following a quasi-periodic or Fibonacci sequence, can substantially enhance solar absorption over perfectly periodic and random arrays.
doi:10.1038/ncomms3095 pmid:23817445 fatcat:ciss7ghxd5c2bk5afjapug7bvy