A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Efficient Privacy-Preserving Machine Learning for Blockchain Network
2019
IEEE Access
A blockchain as a trustworthy and secure decentralized and distributed network has been emerged for many applications such as in banking, finance, insurance, healthcare and business. Recently, many communities in blockchain networks want to deploy machine learning models to get meaningful knowledge from geographically distributed large-scale data owned by each participant. To run a learning model without data centralization, distributed machine learning (DML) for blockchain networks has been
doi:10.1109/access.2019.2940052
fatcat:snkur6qmnzctvh3kbew5zx2czi