A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus

Robert N. Bone, Olufunmilola Oyebamiji, Sayali Talware, Sharmila Selvaraj, Preethi Krishnan, Farooq Syed, Huanmei Wu, Carmella Evans-Molina
2020 Diabetes  
The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow
more » ... our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. In parallel, we generated an RNA-sequencing dataset from human islets treated with brefeldin A (BFA), a known GA stress inducer. Overlapping the T1D and T2D groups with the BFA dataset, we identified 120 and 204 differentially expressed genes, respectively. In both the T1D and T2D models, pathway analyses revealed that the top pathways were associated with GA integrity, organization, and trafficking. Quantitative RT-PCR was used to validate a common signature of GA stress that included ATF3, ARF4, CREB3, and COG6 Taken together, these data indicate that GA-associated genes are dysregulated in diabetes and identify putative markers of β-cell GA stress.
doi:10.2337/db20-0636 pmid:32820009 pmcid:PMC7576569 fatcat:eovvdffifnd43bciegrw7ny7ey