Soliton-based matter-wave interferometer

J. Polo, V. Ahufinger
2013 Physical Review A. Atomic, Molecular, and Optical Physics  
We consider a matter wave bright soliton interferometer composed of a harmonic potential trap with a Rosen--Morse barrier at its center on which an incident soliton collides and splits into two solitons. These two solitons recombine after a dipole oscillation in the trap at the position of the barrier. We focus on the characterization of the splitting process in the case in which the reflected and transmitted solitons have the same number of atoms. We obtain that the velocity of the split
more » ... ns strongly depends on the nonlinearity and on the width of the barrier and that the reflected soliton is in general slower than the transmitted one. Also, we study the phase difference acquired between the two solitons during the splitting and we fit semi-analytically the main dependences with the velocity of the incident soliton, the nonlinearity and the width of the barrier. The implementation of the full interferometer sequence is tested by means of the phase imprinting method.
doi:10.1103/physreva.88.053628 fatcat:dgmg5gy2mzbtvcnqqhjq5rdkq4