A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Oil Price Volatility Forecast with Mixture Memory GARCH
2015
Social Science Research Network
We expand the literature of volatility and Value-at-Risk forecasting of oil price returns by comparing the recently proposed Mixture Memory GARCH (MMGARCH) model to other discrete volatility models (GARCH, RiskMetrics, EGARCH, APARCH, FI-GARCH, HYGARCH, and FIAPARCH). We incorporate an Expectation-Maximization algorithm for parameter estimation of the MMGARCH and find different structures in volatility level as well as shock persistence. MMGARCH is also able to cover asymmetric and long memory
doi:10.2139/ssrn.2576875
fatcat:5iihnxvygjbqzcq7gnje5vglim