Influence of Postprocessing on Wear Resistance of Aerospace Steel Parts Produced by Laser Powder Bed Fusion

Alexander S. Metel, Sergey N. Grigoriev, Tatiana V. Tarasova, Anastasia A. Filatova, Sergey K. Sundukov, Marina A. Volosova, Anna A. Okunkova, Yury A. Melnik, Pavel A. Podrabinnik
2020 Technologies  
The paper is devoted to the research of the effect of ultrasonic postprocessing—specifically, the effects of ultrasonic cavitation-abrasive finishing, ultrasonic plastic deformation, and vibration tumbling on surface quality, wear resistance, and the ability of real aircraft parts with complex geometries and with sizes less than and more than 100 mm to work in exploitation conditions. The parts were produced by laser powder bed fusion from two types of anticorrosion steels of austenitic and
more » ... ensitic grades—20Kh13 (DIN 1.4021, X20Cr13, AISI 420) and 12Kh18N9T (DIN 1.4541, X10CrNiTi18-10, AISI 321). The finishing technologies based on mechanical action—plastic deformation, abrasive wear, and complex mechanolysis showed an effect on reducing the submicron surface roughness, removing the trapped powder granules from the manufactured functional surfaces and their wear resistance. The tests were completed by proving resistance of the produced parts to exploitation conditions—vibration fatigue and corrosion in salt fog. The roughness arithmetic mean deviation Rawas improved by 50–52% after cavitation-abrasive finishing, by 28–30% after ultrasonic plastic deformation, and by 65–70% after vibratory tumbling. The effect on wear resistance is correlated with the improved roughness. The effect of used techniques on resistance to abrasive wear was explained and grounded.
doi:10.3390/technologies8040073 fatcat:4hjm2l46cnbp7j2mdv4d47npka