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ABSTRACT | The development of error-correcting codes has

been closely coupled with deep-space exploration since the

early days of both. Since the discovery of turbo codes in 1993,

the research community has invested a great deal of work on

modern iteratively decoded codes, and naturally NASA’s Jet

Propulsion Laboratory (JPL) has been very much involved. This

paper describes the research, design, implementation, and

standardization work that has taken place at JPL for both turbo

and low-density parity-check (LDPC) codes.

Turbo code development proceeded from theoretical analyses

of polynomial selection, weight distributions imposed by

interleaver designs, decoder error floors, and iterative decod-

ing thresholds. A family of turbo codes was standardized and

implemented and is currently in use by several spacecraft.

JPL’s LDPC codes are built from protographs and circulants,

selected by analyses of decoding thresholds and methods to

avoid loops in the code graph. LDPC encoders and decoders

have been implemented in hardware for planned spacecraft,

and standardization is under way.
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I . INTRODUCTION

In 1948, Shannon [1] proved that every noisy channel has a

maximum rate at which information may be transferred
through it and that it is possible to design error-correcting

codes that approach this capacity, or Shannon limit,
provided that the codes may be unbounded in length.

For the last six decades, coding theorists have been looking

for practical codes capable of closely approaching the

Shannon limit.

For more than four decades, NASA and the Jet

Propulsion Laboratory (JPL) have been sending deep-
space probes to explore the far reaches of our solar system.

Because of the extreme dilution of signal power over

interplanetary distances, JPL has always taken more than

an academic interest in searching for codes that approach

Shannon’s limit as closely as possible.

The saga of error-correcting codes for deep-space

missions is summarized in Table 1. Initial missions in the

late 1950s and early 1960s sent their data uncoded. By the
late 1960s and early 1970s, missions were using codes of

that era, such as Reed–Muller and long constraint-length

convolutional codes (the latter decoded with a suboptimal

sequential decoder). Voyager launched in 1977 with the

state-of-the-art optimized (7, 1/2) convolutional code, to

be decoded with a maximum-likelihood Viterbi decoder

developed partly at JPL years earlier [2]. Voyager’s en-

gineers also anticipated needing an even stronger code for
compressed data and for extended-mission visits to Uranus

and Neptune, so they included an encoder for a (255, 223)

Reed–Solomon code [3] to be concatenated with the

convolutional code when needed. Concatenations of two

relatively simple codes had been proposed by Forney in his

thesis [4] a decade earlier as a way to create a powerful
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overall code with a decoding complexity equivalent to

the complexity of the individual component decoders.

This venerable Reed–Solomon and convolutional concat-

enated coding system has remained a standard in deep

space and many other communication systems for the

past three decades.

Despite this concatenated code’s success in deep space,
JPL continued to look for codes that approached

Shannon’s limit even more closely. The popular wisdom

in the coding community was that near-optimal codes

could only be obtained with increased minimum distance

and exponentially increasing decoding complexity. Deep-

space applications, with their extremely expensive probes

in space and a willingness to invest in complex ground

systems, were one area where highly complex codes could
prove worthwhile if they returned even a smidgen of extra

coding gain. To this end, JPL conducted a search for an

additional 2 dB of coding gain [5] in the 1980s. This

search culminated in the selection of a (15, 1/6) con-

volutional code that was eventually launched with the

Mars Pathfinder and Cassini missions in the mid-1990s,

which spawned a round of research into efficient parallel

architectures [6], [7] for the extremely complex Viterbi
decoder required to support this code.

Galileo became an early test bed for the new coding

schemes in early 1991 when its main antenna failed to unfurl

on its way to Jupiter and the project faced a massive

reduction in planned data rate. The coding group at JPL

proposed and implemented software encoding and decoding

of a concatenated code with a variable-redundancy version

of the standard Reed–Solomon outer code and a complex
(14, 1/4) inner convolutional code. We further proposed

Bredecoding[ the convolutional code several times based on

partial solutions found by the Reed–Solomon decoder. The

redecoding idea and the method to modify a Viterbi decoder

to pin a subset of known trellis states based on prior Reed–

Solomon decoder output had been suggested by other

researchers [8]–[11]. Galileo ultimately implemented for its

mission at Jupiter a feedback concatenated decoder [12] that
iteratively decoded the concatenated code using four stages

of feedback between inner and outer decoders [13], [14],

improving on a single-pass decoder by more than 0.5 dB.

JPL had tiptoed into the modern realm of iterative decoding

but did so along a path that quickly turned out to be an
evolutionary dead end, a Neanderthal to the homo sapiens
emerging on the world stage.

A relatively unknown trio of researchers, Berrou,

Glavieux, and Thitimajshima, profoundly changed the

coding world with their introduction of turbo codes in

1993 [15], a simple but clever parallel concatenation of two

convolutional codes that achieved dramatically larger

coding gains than any other codes of the day, and at
substantially lower complexity. The key insights were the

introduction of an interleaver between the two convolu-

tional codes, and an iterative suboptimal decoder that

passes information back and forth between two relatively

simple maximum a posteriori probability decoders. The

claimed performance was so good that the initial reaction

of the coding establishment was deeply skeptical.

Researchers at JPL were among the first, along with
[16]–[19], to analyze and verify [20]–[22] the turbo code

claims, and to extend the concept of turbo codesVfrom

two constituent codes to multiple codes [23] to more

general trellises [24], from a parallel concatenation to a

serial concatenation [25], and so on. Before Cassini

launched in 1996 with its high-complexity convolutional

code, JPL had already begun standardization of turbo codes

for future space missions.
In 1998, at about the time deep-space missions were

signing up to use turbo codes, MacKay visited JPL to

present a talk entitled BMaking Gallager Codes that Beat

Turbo Codes.[ He showed that low-density parity-check
(LDPC) codes, originally introduced in Gallager’s thesis in

1960 [26], can be designed to perform as well as, or better

than, turbo codes.

The rediscovery of LDPC codes led to more coding
research at JPL and around the world. LDPC codes had

more degrees of design freedom compared to turbo codes,

which enabled designers to more effectively trade off

threshold and error floor performance or other attributes.

On the other hand, this increased flexibility meant that

many of the early LDPC designs were unstructured,

leading to impractical decodingVand even enco-

dingVcomplexities. A key insight enabled a structured
analysis and design of LDPC codes based on protographs
[27], and eventually JPL’s high-speed decoders.

The renaissance of LDPC codes did not mark the end

of turbo codes, however. LDPC codes have performance

and complexity advantages over turbo codes at high code

rates, but turbo codes are currently still the best solu-

tion for the lower code rates. This natural partition

meant that the standard family of turbo codes at rates
1/6, 1/4, 1/3, and 1/2 [28] could live in harmony with a

proposed standard of LDPC codes at rates 1/2, 2/3, 4/5,

and 7/8 [29].

This paper describes the turbo codes and LDPC codes

developed for deep-space applications. It includes discus-

sions of designs, implementations, performance, and

standardization.

Table 1 Codes Used by NASA Missions
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II . TURBO CODES

Turbo codes are constructed by applying two or more

simple-to-decode encoding rules to different permutations

of the same information sequence. The turbo encoder in
Fig. 1 applies encoder a to the information sequence m in

its initial ordering and encoder b to the permuted

information sequence �ðmÞ. Both outputs x and ~x from

the parallel branches of the encoder are concatenated to

form turbo codewords. Short constraint-length convolu-

tional codes are often chosen for the constituent

components, one of which is usually chosen to be

systematic. The resulting turbo code is also known as a
parallel concatenated convolutional code.

The received noisy symbols y and ~y are decoded

iteratively, as shown in Fig. 2. There is a simple decoder

for each of the component codes that makes probability

estimates or soft decisions on each of the message bits. Each

soft decision is decomposed into an intrinsic component

that is due to the noisy observation of that bit and an

extrinsic component that represents information from the
adjacent bits. The extrinsics are permuted and exchanged

as a priori probabilities among the constituent decoders.

Decoding proceeds iteratively according to a message

passing schedule until the constituent decoders reach a

consensus m̂ on the original message bits m.

A. Design and Construction
As for all linear codes, a good turbo code design assures

that every nonzero codeword has a sufficiently large

number of nonzero symbols, or Hamming weight. By

linearity, this assures that every codeword is sufficiently

different from any other that the probability of mistaking

one for the other is small. At high signal-to-noise ratio
(SNR), this minimum distance of a turbo code determines

its error rate, and so good code design techniques assure

that the minimum distance grows with the code length.

Good turbo codes are constructed using short con-

straint length, infinite impulse response (IIR) convolu-

tional codes as components. The IIR property is important

because a single isolated information bit error will produce

a large encoded weight no matter what permutation is
used. On the other hand, information sequences

corresponding to two or more bit errors can be permuted

to different bit patterns whose encoded output bears no

resemblance to the encoding of the unpermuted informa-

tion. The trick in turbo coding is to match low-weight

encodings of one permutation with high-weight encodings

of the other(s), thus producing total weights significantly

higher than the low minimum weights that characterize
the simple component codes.

1) Trellis Termination: Following the k information bits,

an additional t tail bits are appended in order to drive the

encoder to the all-zero state at the end of the block. This

action of returning the encoders to the all-zero state is

called trellis termination. Due to the encoder’s recursive-

ness, the required t tail bits cannot be predetermined but
they can be automatically computed at the encoder using

a trick suggested in [30] and illustrated by the switches

shown in Fig. 11.

2) Choice of Convolutional Code Polynomials: Early

researchers tried to improve on the codes of Berrou et al.
by increasing the constraint length of the constituent

codes. However, it was soon discovered that constraint
lengths higher than Berrou et al.’s original choice of five

led to decoders that did not converge as effectively and

hence required higher thresholds. Better constituent codes

did not necessarily produce better turbo codes.

The first improved design criterion resulting from

analysis was to select a primitive feedback polynomial for

the recursive convolutional component code, instead of a

nonprimitive polynomial as used in the original incarnation
of Berrou et al. The encoded weights of self-terminating

weight-2 input sequences increase linearly with the

distance between its two 1s, with a slope that depends on

the characteristics of the constituent codes. When they are

far apart, the encoded sequence looks like the code’s

infinite impulse response up to the point where the second

bit error terminates the further accumulation of weight.

With a primitive divisor polynomial, all weight-2 inputs
are guaranteed to cause a traverse through all of the

trellis states before any possible return to the all-zero

state, piling up maximum encoded weight. Still, it is the

job of the permuter to further ensure that these

minimal-length traverses in one component code’s state

diagram are paired with longer traverses in another

component with differently permuted input.

Fig. 1. A turbo encoder.

Fig. 2. A turbo decoder primarily contains a feedback loop with

two modified BCJR decoders, a permutation ��, and its inverse.
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3) Weight Distributions and Interleaver Designs: In an early
paper [31], we looked at the weight distributions achievable

for turbo codes using random, nonrandom, and semirandom

permutations. With recursive encoders, non-self-terminat-

ing sequences have little effect on decoder performance

because they accumulate high encoded weight until they are

artificially terminated at the end of the block. From

probabilistic arguments based on selecting the permutations

randomly, it was concluded that self-terminating weight-2
data sequences are the most important consideration in

the design of the constituent codes. Higher weight self-

terminating sequences have successively decreasing im-

portance. These considerations outweigh the criterion of

selecting component codes that would produce the

highest minimum distance if unpermuted.

Random permutations do a very good job of teaming

low weights with high weights for the vast majority of
possible information sequences. However, it is still highly

likely that a few two-bit-error sequences with low encoded

weights will be randomly permuted into other two-bit-

error sequences with low weights. It is possible to design

nonrandom permutations that ensure that the minimum

distance due to weight-2 input sequences grows roughly asffiffiffiffiffi
2k

p
, where k is the information block length. However,

the nonrandom permutations most optimized with respect
to weight-2 inputs amplify the bad effects of higher weight

inputs, and as a result they are inferior in performance to

randomly selected permutations. But there are

Bsemirandom[ permutations that perform nearly as well

as the designed nonrandom permutations with respect to

weight-2 input sequences and are not as susceptible to

being foiled by higher weight inputs.

Similar properties have been built into algorithmic
interleavers, including, most notably, the original inter-

leaver proposed by Berrou [16] and the more recent and

even simpler quadratic interleaver [32].

B. Implementation

1) Turbo Encoders: A turbo encoder as shown in Fig. 1

can be implemented directly in hardware or software and
is fast and simple. The only particular design decision is in

implementation of the interleaver, either as a table in

memory, or as a small algorithm.

2) Turbo Decoders: Decoding is more difficult. As shown

in Fig. 2, a decoder applies a modified Bahl–Cocke–

Jelinek–Raviv (BCJR) algorithm [33] to the noisy symbols y
from one of the constituent convolutional codes, applies
permutation � to the resulting Bextrinsic information,[
combines the result with the noisy symbols ~y from the

other constituent code, inversely permutes the resulting

extrinsic information, and repeats. After some number of

iterations, an estimate m̂ is made of the transmitted

message. The BCJR algorithm, also known as the

Bforward–backward[ algorithm, is moderately complex

and inherently serial. While a codeword can be broken
into overlapping windows on which the BCJR algorithm

can be performed independently and potentially in

parallel, this makes the sequence of operations yet more

complex. For this reason, turbo decoders are more readily

implemented in software on a general-purpose processor

than in application-specific hardware. There are excep-

tions, such as a remarkable hardware decoder built by

Sony [34] that uses 200 copies of a custom application-
specific integrated circuit (ASIC) and has implementation

losses under 0.03 dB. As with the LDPC decoding

algorithm described later, the BCJR equations can be

formulated in a variety of ways. Most implementers

choose to use Bmin-star[ operations in the log-likelihood

domain, rather than sums and products in the probability

domain or another choice, for their simplicity and

stability when values are quantized to small integers.
The turbo decoders in the Deep Space Network (DSN)

are implemented on Texas Instruments 320C6203 digital

signal processors (DSPs), with the key algorithms written

in hand-optimized assembly language for speed [35]. Each

decoding system contains 16 DSPs: 14 for turbo decoding,

one for frame synchronization, and one for scheduling,

control, and status. Each decoder DSP operates indepen-

dently from the others and is assigned decoding tasks by
the scheduler as it matches arriving noisy codewords to

idle DSPs.

A stopping rule is used to reduce the average number of

iterations required. The intent of the stopping rule is to

evaluate the decoder’s tentative result at the end of each

iteration and decide if it is sufficiently likely to be correct

that further iterations are not necessary. Researchers have

proposed a variety of stopping rules, and the one
implemented in the DSN is rule S2 in [36] that compares

the minimum absolute value of the decoded-bit reliabilities

to a threshold. If the estimated reliability of any message bit

fails to exceed the programmed threshold, the decoder

stops after some maximum number of iterations is reached.

As the threshold is reduced from 1 (at which the

maximum number of iterations is performed on every

frame), fewer iterations are performed on average and the
error rate increases. Example performance curves are

shown in Fig. 3 for a maximum of ten iterations. It is

evident that decoder speed can be increased considerably

with virtually no loss in performance, after which there is a

tradeoff between speed and performance.

When using a stopping rule, codewords take variable

amounts of time to decode, and with several decoders

running in parallel, they may be released out of sequence.
In the DSN implementation, a large buffer is included in

which the codewords are reordered. Additional logic tracks

codeword arrival times accurate to 100 ns [37], along with

other metadata.

Turbo codes have been included on several spacecraft. A

test of turbo codes was performed in late 2004 by SMART-1,

a lunar orbiter, but they were not used for significant data

Andrews et al. : Turbo and LDPC Codes for Deep-Space Applications
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return. The MESSENGER spacecraft (a Mercury orbiter
launched on August 3, 2004), Mars Reconnaissance Orbiter,

and New Horizons (Pluto flyby) are all currently using turbo

codes for their primary data return.

III . LOW-DENSITY
PARITY-CHECK CODES

LDPC codes were first introduced by Gallager [26] in his
1960 Ph.D. dissertation. Initially, they were prohibitively

complex and were subsequently forgotten until a series of

papers from MacKay [38], [39] in the late 1990s generated

renewed interest.

Any LDPC code can be described via its low-density

parity-check matrix containing only a few ones in each row

and column. Alternatively, they have a graphical repre-

sentation introduced by Tanner in 1981, and these graphs
also describe the routing for a message-passing decoding

algorithm. Tanner graphs are bipartite, with each edge
connecting a variable node to a check node. Each check

node corresponds to a constraint in the parity-check

matrix, and each variable node connected to the channel

corresponds to a coded symbol.

Gallager’s original LDPC codes were regular, in that all

variable nodes had the same degree (number of connected

edges), as did all check nodes. With the rediscovery of

LDPC codes in the past decade, it was found that irregular
degree distributions can be designed to improve the

performance for very large blocks.

A. Design and Construction
As the graph describing the code grows, connections in

a randomly organized graph can become difficult to manage

at high speed in a dedicated piece of hardware. To alleviate

this problem, with little or no loss in observed perfor-
mance, structured graph designs have been proposed. Two

similar structured graph approaches are multiedge-type

graphs [40] and protographs [27], [41]. Quasi-cyclic

LDPC codes [42] are an important special case.

1) Protograph Designs: A structured LDPC code can be

constructed by taking a small Tanner graph, or protograph,
replicating it many times, and interconnecting the copies as
shown in Fig. 4. When the protograph is replicated T times,

each edge is replicated into a bundle of T edges, now

connecting T variable nodes to T check nodes. The copies of

the protograph are interconnected by Bunplugging[ these

edges from their check node sockets, permuting them, and

reconnecting them. This process is repeated for each

bundle of T edges, or edge type.

While the resulting derived or lifted graph is T times as
large as its protograph, it inherits many of the protograph’s

properties. It has the same code rate (except possibly for

coincidental redundancies due to the particular permuta-

tions chosen) and the same distribution of variable and

check node degrees. Moreover, neighborhoods are pre-

served: in each of the graphs in Fig. 4, for example, every

degree-1 variable node connects to a degree-3 check node,

Fig. 3. Average decoder speed (in codewords/iteration) as

a function of SNR as the stopping rule threshold is varied for

four turbo codes with information lengths k ¼ 1784 and

k ¼ 8920 and code rates 1/3 and 1/6.

Fig. 4. A protograph gives rise to a larger lifted graph.

Andrews et al.: Turbo and LDPC Codes for Deep-Space Applications

2146 Proceedings of the IEEE | Vol. 95, No. 11, November 2007



which is also connected to two degree-2 variable nodes, and

so on. These properties mean that full LDPC codes can be

designed by applying techniques such as density evolution

[59]–[62] to the protograph.

A rate-1/2 systematic repeat-accumulate (RA) code

with repetition-3 is shown in Fig. 5(a). The threshold SNR

required for reliable decoding can be dramatically
improved by Bprecoding[ the repetition code with an

accumulator [43], as shown in Fig. 5(b). To preserve the

rate of the resulting accumulate-repeat-accumulate (ARA)

code, one of the variable nodes is punctured (not

transmitted), as indicated by the open circle in the figure.

In an ARA code protograph, the number of degree-2

variable nodes is equal to the number of inner checks

(checks that are connected to these degree-2 variable
nodes), and it turns out that the minimum distance of the

resulting codes grows slowly as the block length n is made

large. Instead, if some of the degree-2 variable nodes are

replaced with higher degree nodes, the minimum distance

of the resulting codes can be made to grow linearly with n,

with high probability [44]. An example of such an AR4JA

(BAccumulate Repeat-4 Jagged-Accumulate[) protograph

is shown in Fig. 6, along with a way of adding variable nodes
to increase the code rate. The rate-1/2 protograph in this

family has a decoding threshold of Eb=N0 ¼ 0:62 dB.

2) Construction of Protograph Codes: A protograph is

expanded or lifted into a full code graph by the design of a

permutation of size T for each edge in the protograph.

Popular design techniques use either structured permuta-

tions, such as cyclic shift permutations called circulants, or
random-like permutations generated by computer search

with an optimization criterion. Both techniques aim to

avoid small loops in the code graph because loops

introduce dependence between random variables that is

unaccounted for in the belief propagation algorithm. Belief

propagation determines exact a posteriori probabilities on

a graph that contains no loops [45], but in the presence of

more than one loop [46], the algorithm is only approxi-

mate and it can even fail to reach any answer. A collection
of small loops can also form a stopping set, a problematic

graph structure when a belief propagation decoder is used

with the binary erasure channel.

Among computer search methods, progressive edge

growth (PEG) [47] is a greedy algorithm that sequentially

inserts graph edges each step in a location that maximizes

the minimum loop length, or girth, of the resulting graph.

A graph with large girth is free from small loops, but
other metrics better indicate the presence of either small

loops or stopping sets. The extrinsic message degree (EMD)

[48] of a variable node set counts the number of check nodes

connected exactly once to that set. While EMD is

computationally burdensome, the approximate cycle EMD

(ACE) [48] metric is a practical substitute that counts only

the number of check node connections to each loop in a

graph. Evaluation of ACE has complexity linear in code block
length, and its use can reduce error floors by two to three

orders of magnitude from randomly constructed graphs.

The LDPC codes described in Section V were built

from the protographs of Fig. 6 in two stages. Each

protograph was first lifted by a factor of T ¼ 4 with PEG

(yielding 20 variable nodes, 16 of them transmitted) to

eliminate parallel edges. The resulting graph was then

lifted by a factor of T ¼ n=16 using circulants with
Bphases[ selected by a Viterbi-like algorithm from [48]

that aimed to maximize a variant of ACE, with an

additional cost for particularly small loops.

B. Implementation

1) LDPC Encoders: An LDPC code is specified by its

sparse parity check matrix H, unlike a turbo code that is
specified by its encoder circuit. There are various ways to

build an encoder that maps information sequences of

length k into codewords of length n that satisfy the n � k
given linear constraints. The obvious method is to invert H
to find the systematic generator matrix G, and then to

perform encoding by matrix multiplication. Except in

special cases, G is dense, and hence encoding complexity is

Fig. 5. Protographs for (a) a systematic rate-1/2 RA code and

(b) a rate-1/2 ARA code.

Fig. 6. Protographs in the AR4JA family with rates 1/2 and higher.
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quadratic in the codeword length. Those special cases
include RA and irregular repeat-accumulate (IRA) codes

[49], which is one reason these constructions have

attracted particular interest. Unfortunately, this simple

encoding method requires that at least n � k variable

nodes have degree � 2, and this comes at a cost in

decoding threshold and minimum distance.

In a landmark paper, Richardson and Urbanke

demonstrated that by using back-substitution, one can
build encoders for most LDPC codes with complexity that

grows almost linearly in block length [50]. While a

remarkable result, this did not solve the encoding puzzle

because the resulting computations require a large matrix

that is sparse but otherwise largely disorganized. This

matrix must be stored in the encoder, which can be a

burden in the deep-space environment. Their encoding

algorithm is also essentially serial, limiting the speed at
which such encoders can run.

Some block-circulant parity check matrices have block-

circulant matrix inverses. While the resulting generator

matrices are dense, they are highly structured. Encoders

based on this fact consist of a set of shift registers and are

both fast and fairly simple [51], [52].

2) LDPC Decoders: An LDPC decoder is provided with
quantized soft symbol metrics at each variable node in the

code graph. An edge metric is associated with each edge in

the graph, and these are initialized to zero before decoding.

Decoding proceeds by alternately updating the edge metrics

according to a computation performed by each variable node,

and then by updating them again according to computations

performed at each check node. More precisely, each

variable node i is given a log-likelihood ratio (LLR)
�i ¼ lnðPðci ¼ 0Þ=Pðci ¼ 1ÞÞ, indicating the a priori

relative probability between the two binary possibilities

for the code symbol ci. Variable node i makes a soft

decision about ci, based on �i and the opinions fujg of

the associated check nodes, and passes the new informa-

tion to each check node as the message vj. Each check

node then looks for consistency among the incoming edge

messages vj and returns its opinion in the form of an
updated message ui. Those equations are typically stated

in log likelihood ratio or Breliability[ form as

vi ¼�i þ
X
j6¼i

uj (1)

ui ¼ 2 tanh�1
Y
i 6¼j

tanh
vi

2

0
@

1
A: (2)

An LDPC decoder must simply perform these two

operations a great many times, as fast as possible. This can

be done on a general-purpose microprocessor, but this
problem can be more efficiently solved with an ASIC or

field-programmable gate array (FPGA). A typical FPGA

implementation performs several variable node updates
per clock cycle until all are updated, then several check

node updates per clock cycle until all check nodes are

updated, and then repeats for the next iteration. The

number of updates per clock cycle is determined by the

hardware resources available and is typically far fewer than

the number of nodes in the graph.

Equation (1) is readily implemented but (2) is inconve-

nient. Instead, computation of (2) can be performed via a
series of applications of the following two-input function

min�ðv1; v2Þ ¼ sgnðv1Þsgnðv2Þ min jv1j; jv2jð Þð
þ ln 1 þ e� jv1jþjv2jð Þ

� 	
� ln 1 þ e� jv1j�jv2jj j

� 		
: (3)

This min� function consists of a min operation and two

additive correction terms. The correction terms can be
approximated with a lookup table, a two-segment linear

approximation [53], or discarded entirely for a loss of up to

1.0 dB in required SNR. When vi’s are quantized, (3)

remains commutative but is no longer associative, so the

order of operations can be significant.

Equation (2) can also be written

~ui ¼
Y
i6¼j

sgnðviÞ
X
i 6¼j

~vj (4)

where ~vj ¼ � ln tanhðjvjj=2Þ. Here, ~vj represents the

unreliability of message vj rather than its reliability [54].

Equations (1) and (4) are easy to implement, but care must

be used in the transformation between reliabilities and

unreliabilities.

Hardware LDPC decoders are most often implemented

using (1) and (3), though Richardson has chosen (1) and

(4) in [55], and other methods have been used.
A hardware Buniversal[ decoder suitable for decoding

unstructured graphs was also constructed at JPL and

used to test hundreds of candidate code designs for

threshold and error-floor performance at throughputs

close to 10 Mbps on a Xilinx Virtex-II XC2V 8000 FPGA.

One particular challenge associated with such a decoder is

with the routing difficulty that can be posed by a large

unstructured parity check matrix. A decoder suitable for
decoding unstructured graphs was devised by partitioning

the code’s parity matrix into L macro columns and L macro

rows as shown in Fig. 7 (for L ¼ 4). The nonzero entries in

each of these macro columns or rows represent a graph

edge that carries an extrinsic LLR from a constraint node

to a variable node or vice versa. Along with a crossbar that

allows any macro column to be connected to any macro

row, the schedule suggested in the figure has like-labeled
data moving from row-to-column or column-to-row

ordering without collision. A decoder based on such an
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interleaver is able to Buniversally[ decode any bipartite

graph up to some complexity. However, because crossbar

complexity scales as L2, practical designs (and therefore

the achievable parallelism) have been limited to L ¼ 16.

For LDPC codes composed of circulants, fast hardware

decoders can be built that take advantage of this structure.
The decoder can update all the variable nodes (or check

nodes) in one copy of the protograph in one clock cycle

and use simple counters to track the circulant-expanded

copies of the protograph. A faster decoder may update

several copies of the protograph simultaneously. A smaller

and slower decoder may update only a portion of the

protograph in each clock cycle. Each of these decoders has

been built at JPL in Xilinx FPGAs, giving decoder speeds
that range from 2 to 80 Mbps, with a proportional range in

FPGA resources consumed. The small 2-Mbps decoder is

intended for implementation on the Mars Reconnaissance

Orbiter for communication with the Mars Science Lander;

the faster decoders may be used by future missions such as

the Constellation Program [56].

3) LDPC Decoder Stopping Rules: Just as with turbo
codes, a stopping rule can be used to reduce the number

of iterations required. Because an LDPC decoder naturally

seeks to identify the transmitted codeword (rather than

the transmitted message as a turbo decoder does), it is

natural to stop the decoder when its tentative answer is in

fact a codeword. The probability of finding an incorrect

codeword is determined by the code’s minimum distance.

A good LDPC code can have a large minimum distance,
and this probability can be less than 10�10 at any Eb=N0.

Hence the codeword criterion can be used to detect

decoder errors in addition to serving as a stopping rule.

The undetected error rate is small, as it is with Reed–

Solomon decoders, and unlike turbo decoders.

When a stopping rule is used, the number of iterations

required is reduced from the worst case value to very nearly

the average value, but the decoding time becomes variable.
For example, when the AR4JA (n ¼ 8192, k ¼ 4096) LDPC

code that JPL has proposed for Consultative Committee for

Space Data Systems (CCSDS) standardization is used with

additive white Gaussian noise (AWGN) at 1.35 dB (an

operating point where a decoder not constrained by speed
would achieve Word Error Rate (WER) less than 10�6), the

decoder requires an average of 22.5 iterations, but

successful decodings of some codewords require 50 to

200 iterations with nonnegligible frequency.

Because the decoding time is variable, an input buffer

must be provided between the decoder and a continuous

received symbol stream from a spacecraft. Perhaps

remarkably, this buffer can be small. Fig. 8 shows the
system performance using buffers of sizes 0 to 5 frames,

with frames arriving Iarr iterations apart, compared to

the average iterations required (Iavg ¼ 22:5), shown as

the dashed vertical line. The upper curve shows the

performance with no buffer, where the decoder can only

perform as many iterations as are available between

codeword arrivals. With a buffer that can store five noisy

codewords, the decoder fails to decode those that require
9 200 iterations but successfully decodes most of the

others so long as the frame arrival rate is below the time

required to perform the average 22.5 iterations.

IV. PERFORMANCE RELATIVE
TO BOUNDS

A. Universal Bounds on All Types of Codes
Very long turbo and LDPC codes perform astonishingly

close to capacity limits. Shorter codes perform farther from

the capacity limits, but most of the difference is explained

by finite-block-size constraints on the performance of any
code. Using Shannon’s sphere-packing bound (SPB) for the

continuous-input AWGN (CI-AWGN) channel as a bench-

mark on the performance of optimal codes, we showed in

1998 [57] that well-designed finite-size turbo codes could

approach this benchmark within a residual Bimperfectness[

Fig. 7. Collision-free interleave scheduling for an L ¼ 4 parallel

decoding implementation. Regions labeled with the same letter are

interleaved from/to during the same time span.

Fig. 8. Performance of the variable-iterations decoder with

preemptive buffer control as a function of frame interarrival time Iarr ,

with buffer sizes (right to left) B ¼ 0, 1, 2, 3, 4, 5, AR4JA(8192,4096)

code, Eb=N0 ¼1.35 dB.
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of about 0.7 dB over a wide range of code sizes and rates up
to 1/2. An approximation to the SPB for binary-input-

constrained channels has proved to be a similarly useful

benchmark for code rates higher than 1/2.

Our work on the SPB for the CI-AWGN channel

uncovered a rather remarkable near-separation of the

performance effects of finite-size constraints from those of

rate and channel constraints that affect capacity calcula-

tions. For any channel and rate constraint, we can
calculate the corresponding capacity-constrained threshold
on Eb=N0, above which arbitrarily low word error rate Pw is

achievable in the limit as a code becomes arbitrarily large

while maintaining the constrained rate. The SPB limits the

achievable Pw if the code parameters are constrained to

finite ðn; kÞ, or alternatively, it defines a size-constrained
optimal threshold on Eb=N0 that depends on ðn; k; PwÞ. If we

measure this size-constrained threshold as a function of
ðr; k; PwÞ, where r ¼ k=n is the code rate, the difference

between the size-constrained threshold for fixed ðk; PwÞ
and the capacity-constrained threshold for rate r is only

weakly dependent on r, as illustrated in Fig. 9. Thus, a

good rule of thumb is to use this difference as a measure of

the finite-size penalty that should be added to the

appropriate capacity-constrained threshold to approximate

the size-constrained optimal threshold.

A given code’s size-constrained nonoptimality at a
prescribed Pw is the excess Eb=N0 required for it to achieve

error rate Pw over the corresponding size-constrained

optimal threshold. Well-designed turbo and LDPC codes

can reach a size-constrained nonoptimality of about 1/2 dB

over a wide range of rates and sizes.

B. Union Bounds for Turbo Codes
In the first few years after the invention of turbo codes,

union bounds [19], [22], [58] were calculated to characterize

their performance, based on transfer functions derived from

the state diagrams defining their recursive convolutional

component codes. The premise for these bounds is the same

as for the usual transfer function bounds applied to standard

convolutional codes. The average error probability for an

ensemble of turbo codes is upper bounded by a union bound

that sums contributions from error paths of different
encoded weights. This ensemble is defined by fixing the

recursive convolutional component codes and allowing the

interleaver(s) to be selected randomly (the uniform inter-
leaver [19] assumption). The union bound on the ensemble

average word error probability Pw or bit error probability Pb

depends intrinsically on an input–output weight enumerator
[19], [58], which counts the number of paths of each possible

input–output weight combination. This is unlike the case of

Fig. 9. Finite-size penalty obtained from the CI-AWGN SPB as a function of code rate r, information block size k, and codeword error rate Pw .

Andrews et al.: Turbo and LDPC Codes for Deep-Space Applications

2150 Proceedings of the IEEE | Vol. 95, No. 11, November 2007



a plain convolutional code, for which the union bound on Pw

depends only on the code’s output weight enumerator. The

ensemble average weight enumerator gives the interleaver
gain [19] of the turbo code, which tells the rate at which Pw

and Pb are lowered with increasing interleaver size k.

Union bounds proved useful for turbo codes because they

accurately predict the level of the error floor of a turbo code’s

performance curve and suggest ways to design component

codes and interleavers to lower this floor. The error floor is a
low-slope region of the performance curve, wherein the

turbo decoder’s error rate decreases very slowly with

increasing Eb=N0. Above a certain Eb=N0, the union bound

basically tells the whole story, i.e., the Pw and Pb predicted by

the bound are accurately achieved both by a maximum-

likelihood decoder and by a turbo decoder, even though the

latter is not a maximum-likelihood algorithm.

C. Iterative Decoding Thresholds for Turbo and
LDPC Codes

The union bound calculations were useful for de-

termining and explaining the performance of turbo codes

in their error floor region and aided the design of good

turbo codes to drive this floor as low as possible. The union

bounds, however, did not predict the position of the

Bwaterfall[ portion of the turbo code’s performance curve.
Density evolution analysis, introduced in the form of

BEXIT charts[ [59] or Bextrinsic SNR[ analysis [60]–[62],

provided a method for obtaining an iterative decoding
threshold for ensembles of turbo and turbo-like codes.

Below this threshold, the iterative decoder fails with high

probability, but above this threshold, the error probability

can be driven to zero if the turbo code’s interleaver is

arbitrarily large and sufficiently randomized.
Density evolution was also an important tool for

determining iterative decoding thresholds for ensembles of

LDPC codes [63]. A landmark paper by Richardson et al.
[64] determined and tabulated optimal irregular degree

distributions yielding minimum thresholds for unstruc-

tured LDPC codes. Density evolution can also be applied to

determine iterative decoding thresholds for structured

LDPC codes, including multiedge-type codes [65] and
protograph codes [27].

The iterative decoding threshold for protograph codes

is a capacity-like limit in that it defines a minimum

Eb=N0 required for achieving arbitrarily small error rates

in the limit as the protograph is expanded to build an

arbitrarily large code. The difference between the proto-

graph’s iterative decoding threshold and the capacity

limit for the protograph’s rate is the protograph nonopti-
mality under iterative decoding. The protograph non-

optimality is solely a function of the small protograph and

not of the size or the method by which it is expanded to

build a large code. The remainder of a protograph code’s

size-constrained nonoptimality is its expansion nonopti-
mality that results from the particular choice of permuta-

tions to expand the protograph to a finite-size code.

Full density evolution is complex, so instead we have
used a fast and accurate approximation to density evolution

originally proposed in [66] as a protograph design tool. The

reciprocal channel approximation makes use of a single

real-valued parameter, the edge message SNR s, as a stand-

in for full density evolution. For every value of s, a

reciprocal, r, is defined such that CðsÞ þ CðrÞ ¼ 1, where

CðxÞ denotes the capacity of the binary-input AWGN

channel with SNR x. In the reciprocal channel approxima-
tion, the parameter s is additive at variable nodes and the

reciprocal parameter r is additive at check nodes. It is a

simple matter to track the evolution with iterations of SNR

messages s
*

e and s
(

e in both directions along all edges e of a

small bipartite protograph. The protograph’s threshold is

the minimum value of the channel input SNR for which

unbounded growth of all such edge messages is achieved.

Our best protograph code designs have aimed for a
protograph nonoptimality around 0.4 dB. With such

protograph designs, we have been able to limit the

additional expansion nonoptimality to only about 0.1 to

0.2 dB if we apply our optimized expansion techniques

such as PEG [67] and ACE [48] to build the full protograph

code. While it is possible to push the protograph non-

optimality very close (perhaps arbitrarily close) to 0 dB, we

have found that highly optimized protographs are too
complex and produce intolerably large expansion non-

optimality when these protographs are expanded to codes

of a few thousands or tens of thousands of bits. Thus, we

generally look for protographs optimized under the

constraint that they are also simple and small.

D. Performance of Actual Codes
The size-constrained nonoptimality, measured at a

codeword error rate of Pw ¼ 10�4 is plotted on the hori-

zontal axis of Fig. 10 for several families of LDPC codes

[68], including two regular BG36[ codes with variable

nodes of degree 3, check nodes of degree 6, and code rate

1/2. Another key parameter of an LDPC code is the

complexity of its decoder, measured in total number of

edge metrics that must be computed. Again, this is pri-

marily a function of code rate and block length: lower rate
codes and longer block-length codes require more itera-

tions. This dependence is fairly predictable, and when this

component is removed, there is a remaining complexity

variation due to the design of the code family. This is

shown on the vertical axis of Fig. 10 in logarithmic units.

V. STANDARDIZATION OF CODES
FOR DEEP SPACE

A. Standardization of Turbo Codes
Standardization of turbo codes [28] by the CCSDS was

a remarkably efficient process. In part, this was because

few proposals were involved; moreover, it was because

there are relatively few parameters that must be
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determined to define a turbo code. In fewer than six years

from the initial discovery of turbo codes in late 1993, a

CCSDS standard had been issued, describing the family of
turbo codes depicted in Fig. 11.

When designing a turbo code, the first choice is in the

constraint length of the constituent codes, which trades

the decoder’s computational complexity against required

SNR. The CCSDS chose to use 16-state codes, in contrast

to the 8-state codes chosen for third-generation wireless

telephony and the IEEE 802.16 standard, among others.

This was to save a fraction of a decibel in required SNR (an
extremely valuable metric in deep space problems) at a

cost of a factor of two in decoder complexity (a relatively

cheap item in this setting). Aside from some research in

asymmetric turbo codes [69], most turbo codes use two

identical constituent convolutional codes with a primitive

polynomial denominator of the specified constraint length,

and numerator polynomials of the same degree. There are

few enough such possibilities that a computer search can
identify particularly good choices. The convolutional codes

must be terminated in some way to prevent Bend effects[
from introducing low-weight codewords. The CCSDS

choice was to independently terminate the interleaved

and noninterleaved codes by driving each to encode to its

zero state, a simple and sufficient solution [30], [70].

Finally, an interleaver must be chosen. The interleaver

design primarily determines the level of the error floor, but

despite a tremendous amount of research on this problem,
good interleaver design remains something of an art.

While a set of s-random interleavers [31] was proposed for

their excellent performance, a Berrou-style [16] algorith-

mically specified interleaver was chosen for the standard.

This allows a turbo encoder to generate the permutation

with a logic circuit rather than by storing it as a large table

in memory.

Performance is shown in Fig. 12 for two rate-1/6 turbo
codes in comparison to the much more complex Cassini

code of approximately the same rate (with two different

interleaving depths, I ¼ 1; 5).

B. Standardization of LDPC Codes
Standardization of LDPC codes by the CCSDS has proven

challenging. In part, this is because the class of LDPC codes

is very large, and their differences can be small. There is also
a long list of desirable attributes [71], and no code is superior

in all categories. The standardization process is ongoing,

with a variety of candidates including serial concatenated

turbo codes, the IRA code chosen by the second-generation

Digital Video Broadcast standard (DVB-S2) [72], and regular

and irregular LDPC codes.

Fig. 10. Tradeoff between normalized decoder complexity and size-constrained nonoptimality among several LDPC code families at

a codeword error rate of 10�4.

Andrews et al.: Turbo and LDPC Codes for Deep-Space Applications

2152 Proceedings of the IEEE | Vol. 95, No. 11, November 2007



JPL has proposed a family of nine AR4JA LDPC codes

with performances shown in Fig. 13 [29]. Also shown is

the performance of code C2, a regular LDPC code with

variable nodes of degree 4, check nodes of degree 32,

and rate k=n ¼ ð511 � 14 þ 2Þ=ð511 � 16Þ ¼ 0:8752. A

variant of code C2 has also been proposed for CCSDS

standardization [29].

VI. THE FUTURE AND OPEN QUESTIONS

Turbo codes were the first of the modern iteratively

decoded codes to become practical. LDPC codes followed

and have proven very versatile, but they have not replaced

turbo codes, or even the traditional block and convolu-

tional codes. LDPC codes are decoded on a parity check

matrix, and this matrix grows larger as the code rate is
decreased, making low-rate LDPC decoders more complex.

In contrast, turbo codes are decoded on trellises, with one

trellis section per information bit, corresponding to several

code symbols. Hence turbo codes remain superior to LDPC

codes at low rates. Iterative decoding, of either turbo or

LDPC codes, remains complex relative to either Viterbi

decoding of convolutional codes or to algebraic decoding

techniques for Reed–Solomon and other block codes.

Fig. 11. The CCSDS turbo encoder.

Fig. 12. Bit error rate curves for several codes with rates near 1/6:

k ¼ 1784 and k¼ 8920 turbo codes and the (n ¼ 255, k¼ 223)

Reed–Solomon code concatenated with a constraint length N ¼ 15,

rate 1/6 convolutional code.
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When decoding complexity is constrained, as it is in high-

data-rate applications, the traditional codes remain

unbeaten. It is unknown if there are fundamental reasons
why these different niches require different coding

solutions. It is quite possible that good LDPC codes based

on generator matrices will be found, and that low

complexity LDPC decoding algorithms will be discovered.

If so, perhaps LDPC codes will eventually solve all coding

problems. Decoder complexity in particular is unknown

territory, with few theorems to guide the way. Analog

LDPC decoders briefly appeared as a magic bullet to
achieve extraordinary decoding speeds with relatively few

transistors, but practical implementation has proven

challenging [73], [74].

Iterative low-rate codes can provide reliable commu-

nication at Eb=N0 ¼ 0 dB and below. With a rate 1/6 code

and binary phase-shift keying modulation, for example,

Es=N0 G � 7:8 dB, and few radio receivers can find and

track the symbol timing in such a demanding situation.
There is a need for improved receivers, perhaps using

methods such as [75] and [76] to iteratively perform

channel estimation and decoding.

An exciting trend in coding research today is in

Buniversal codes[ that are inherently optimal (or asymp-

totically so) for wide classes of problems, in the same way

that the Lempel–Ziv data-compression algorithms are

asymptotically optimal for any data source. Rateless
erasure correcting codes [71], [77] are asymptotically

optimal for channels with an arbitrary and unknown

erasure rate. Perhaps error-correcting codes could also be

designed analogously, so they adapt to the channel error

statistics. h
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