A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Unravelling the Interactions of Magnetic Ionic Liquids by Energy Decomposition Schemes: Towards a Transferable Polarizable Force Field
2021
Molecules
This work aims at unravelling the interactions in magnetic ionic liquids (MILs) by applying Symmetry-Adapted Perturbation Theory (SAPT) calculations, as well as based on those to set-up a polarisable force field model for these liquids. The targeted MILs comprise two different cations, namely: 1-butyl-3-methylimidazolium ([Bmim]+) and 1-ethyl-3-methylimidazolium ([Emim]+), along with several metal halides anions such as [FeCl4]−, [FeBr4]−, [ZnCl3]− and [SnCl4]2− To begin with, DFT geometry
doi:10.3390/molecules26185526
pmid:34576997
fatcat:2o5rxnvvnze2vkztfef7hpy6ge