DESIGN METHOD OF PIN ENGAGEMENT DRIVE SPROCKETSWITH RUBBER-REINFORCED TRACKS OF TRACTION AND TRANSPORTATION VEHICLES

R. S Fedotkin, V. A Kryuchkov, V. D Beynenson, V. L Parfenov
2017 Traktory i sel'hozmashiny  
Nowadays rubber-reinforced tracks found wide application on different purpose traction and transportation vehicles due to well-known advantages, including possibility of their installation instead of metal linked tracks without significant modernization of undercarriages structures. The operational experience of vehicles with rubber-reinforced tracks shows that their construction differences in comparison with metal tracks provide increased loading to crawler outline, especially to drive
more » ... ts. It shows on necessity of individual drive sprockets design for rubber-reinforced tracks. Special methods for this are absent and traditional methods intended for metal tracks do not provide reliability and efficiency of track engagement. The article contains the special designed method of pin engagement drive sprockets with rubber-reinforced tracks engineering. Practically established that rubber-reinforced track bending is going through the broken line in conditional joints and the engagement element with the drive sprocket tooth is spool of inset element with the part of reinforce lay. All the necessary analytical dependences for drive sprockets design and calculation are shown. The optimal values of contact angle for real constructions of rubber-reinforced tracks, when the normal teeth form is provided; analytical dependences of kinematic pitch circle and bottom circle radiuses for different variations of conditional joints are determined. Boundary conditions for optimal values determination of drive sprockets width and thickness and also their heads radius are accounted. The efficient options of drive sprockets teeth profile curves plotting are shown. The developed design method of pin engagement drive sprockets with rubber-reinforced is based on typical methods for metal tracks and takes into account structural features of rubber-reinforced tracks. It provides reliability and efficiency of track engagement and can be used in design process of traction and transportation vehicles undercarriages.
doi:10.17816/0321-4443-66265 fatcat:jc5kpzdj7fac5egvhddjpu3oe4