Pressure-induced liquid-liquid transition in a family of ionic materials [post]

Zaneta Wojnarowska, Shinian Cheng, Malgorzata Swadzba-Kwasny, Shannon McLaughlin, Yoan Delavoux, Marian Paluch
2021 unpublished
Liquid−liquid transition (LLT) between two disordered phases of single-component material remains one of the most intriguing physical phenomena. Here, we report a first-order LLT in a series of ionic liquids containing trihexyl(tetradecyl)phosphonium cation [P666,14]+ and anions of different sizes and shapes, providing an insight into the structure-property relationships governing LTT. In addition to calorimetric proof of LLT, we report that ion dynamics exhibit anomalous behavior during the
more » ... avior during the LLT, i.e., the conductivity relaxation times (τσ) are dramatically elongated, and their distribution becomes broader. This peculiar behavior is induced by both isobaric cooling and isothermal compression with the τσ(TLL,PLL) being constant for a given system. The latter observation proves that LLT, in analogy to liquid-glass transition, has an isochronal character. Finally, the magnitude of discontinuity in a specific volume at LLT was examined using the Clausius-Clapeyron equation.
doi:10.21203/rs.3.rs-557473/v1 fatcat:w656vfxevzfbvi4voyfiqjslfu