Genetic contributors to lipoprotein cholesterol levels in an intercross of 129S1/SvImJ and RIIIS/J inbred mice

Malcolm A. Lyons, Ron Korstanje, Renhua Li, Kenneth A. Walsh, Gary A. Churchill, Martin C. Carey, Beverly Paigen
2004 Physiological Genomics  
To determine the genetic contribution to variation among lipoprotein cholesterol levels, we performed quantitative trait locus (QTL) analyses on an intercross between mouse strains RIIIS/J and 129S1/SvImJ. Male mice of the parental strains and the reciprocal F1 and F2 populations were fed a high-cholesterol, cholic acid-containing diet for 8-12 wk. At the end of the feeding period, plasma total, high-density lipoprotein (HDL), and non-HDL cholesterol were determined. For HDL cholesterol, we
more » ... tified three significant QTLs on chromosomes (Chrs) 1 (D1Mit507, 88 cM, 72-105 cM, 4.8 LOD), 9 (D11Mit149, 14 cM, 10-25 cM, 9.4 LOD), and 12 (D12Mit60, 20 cM, 0-50 cM, 5.0 LOD). These QTLs were considered identical to QTLs previously named Hdlq5, Hdlq17, and Hdlq18, respectively, in crosses sharing strain 129. For total cholesterol, we identified two significant QTLs on Chrs 1 and 9, which were named Chol10 (D1Mit507, 88 cM, 10-105 cM, 3.9 LOD) and Chol11 (D11Mit149, 14 cM, 0-30 cM, 4.4 LOD), respectively. In addition, for total cholesterol, we identified two suggestive QTLs on Chrs 12 (distal) and 17, which remain unnamed. For non-HDL cholesterol, we identified and named one new QTL on Chr 17, Nhdlq3 (D17Mit221, 58 cM, 45-60 cM, 3.4 LOD). Nhdlq3 colocalized with orthologous human QTLs for lipoprotein phenotypes, and with Abcg5 and Abcg8. Overall, we detected eight QTLs for lipoprotein cholesterol concentrations on Chrs 1, 9, 12, and 17 (each two per chromosome), including a new QTL for non-HDL cholesterol, Nhdlq3, on Chr 17. mouse; quantitative trait locus/loci; quantitative trait locus; highdensity lipoprotein; low-density lipoprotein; Abcg5, Abcg8; Apoa2
doi:10.1152/physiolgenomics.00168.2003 pmid:14872007 fatcat:fefb7i4mmrdejlid5pe6jj4vbm