Free Space Optical Communication: Challenges and Mitigation Techniques [article]

Hemani Kaushal, Georges Kaddoum
2015 arXiv   pre-print
In recent years, free space optical (FSO) communication has gained significant importance owing to its unique features: large bandwidth, license free spectrum, high data rate, easy and quick deployability, less power and low mass requirement. FSO communication uses optical carrier in the near infrared (IR) and visible band to establish either terrestrial links within the Earths atmosphere or inter-satellite or deep space links or ground to satellite or satellite to ground links. However,
more » ... of great potential of FSO communication, its performance is limited by the adverse effects (viz., absorption, scattering and turbulence) of the atmospheric channel. Out of these three effects, the atmospheric turbulence is a major challenge that may lead to serious degradation in the bit error rate (BER) performance of the system and make the communication link infeasible. This paper presents a comprehensive survey on various challenges faced by FSO communication system for both terrestrial and space links. It will provide details of various performance mitigation techniques in order to have high link availability and reliability of FSO system. The first part of the paper will focus on various types of impairments that poses a serious challenge to the performance of FSO system for both terrestrial and space links. The latter part of the paper will provide the reader with an exhaustive review of various techniques used in FSO system both at physical layer as well as at the upper layers (transport, network or link layer) to combat the adverse effects of the atmosphere. Further, this survey uniquely offers the current literature on FSO coding and modulation schemes using various channel models and detection techniques. It also presents a recently developed technique in FSO system using orbital angular momentum to combat the effect of atmospheric turbulence.
arXiv:1506.04836v1 fatcat:gvzq3wip2rexdnybi3n3ww4tfm