Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching

P.-F. Marteau
2009 IEEE Transactions on Pattern Analysis and Machine Intelligence  
In a way similar to the string-to-string correction problem we address time series similarity in the light of a time-series-to-time-series-correction problem for which the similarity between two time series is measured as the minimum cost sequence of "edit operations" needed to transform one time series into another. To define the "edit operations" we use the paradigm of a graphical editing process and end up with a dynamic programming algorithm that we call Time Warp Edit Distance (TWED). TWED
more » ... is slightly different in form from Dynamic Time Warping, Longest Common Subsequence or Edit Distance with Real Penalty algorithms. In particular, it highlights a parameter which drives a kind of stiffness of the elastic measure along the time axis. We show that the similarity provided by TWED is a metric potentially useful in time series retrieval applications since it could benefit from the triangular inequality property to speed up the retrieval process while tuning the parameters of the elastic measure. In that context, a lower bound is derived to relate the matching of time series into down sampled representation spaces to the matching into the original space. Empiric quality of the TWED distance is evaluated on a simple classification task. Compared to Edit Distance, Dynamic Time Warping, Longest Common Subsequnce and Edit Distance with Real Penalty, TWED has proven to be quite effective on the considered experimental task.
doi:10.1109/tpami.2008.76 pmid:19110495 fatcat:mdalo7eyefc33nn7dwhztc4soa