Monotonicity formulas for parabolic flows on manifolds

Richard S. Hamilton
1993 Communications in analysis and geometry  
Recently Michael Struwe [S] and Gerhard Huisken [Hu2] have independently derived monotonicity formulas for the Harmonic Map heat flow on a Euclidean domain and for the Mean Curvature flow of a hypersurface in Euclidean space. In this paper we show how to generalize these results to the case of flows on a general compact manifold, and we also give the analogous monotonicity formula for the Yang-Mills heat flow. The key ingredient is a matrix Harnack estimate for positive solutions to the scalar
more » ... eat equation given in [H]. In [GrH] the authors show how to use the monotonicity formula to prove that rapidly forming singularities in the Harmonic Map heat flow are asymptotic to homothetically shrinking solitons; similar results may be expected in other cases, as Huisken does in [Hu2] for the Mean Curvature flow in Euclidean space. We only obtain strict monotonicity for a special class of metrics, but in general there is an error term which is small enough to give the same effect. (Chen Yummei and Michael Struwe [CS] give a different approach to the error on manifolds.) The special class of metrics are those which are Ricci parallel (so that DiRjk = 0) and have weakly positive sectional curvature (so that RijkiViWjVkWt > 0 for all vectors V and W). This holds for example if M is flat or a sphere or a complex projective space, or a product of such, or a quotient of a product by a finite free group of isometries. In each case we consider a solution to our parabolic equation on a compact manifold M for some finite time interval 0 < t < T, and we let k be any
doi:10.4310/cag.1993.v1.n1.a7 fatcat:tipgbz3vyvdg3cnc4dhfwxhftm