Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review

Michel E. D. Chaves, Michelle C. A. Picoli, Ieda D. Sanches
2020 Remote Sensing  
Recent applications of Landsat 8 Operational Land Imager (L8/OLI) and Sentinel-2 MultiSpectral Instrument (S2/MSI) data for acquiring information about land use and land cover (LULC) provide a new perspective in remote sensing data analysis. Jointly, these sources permit researchers to improve operational classification and change detection, guiding better reasoning about landscape and intrinsic processes, as deforestation and agricultural expansion. However, the results of their applications
more » ... ve not yet been synthesized in order to provide coherent guidance on the effect of their applications in different classification processes, as well as to identify promising approaches and issues which affect classification performance. In this systematic review, we present trends, potentialities, challenges, actual gaps, and future possibilities for the use of L8/OLI and S2/MSI for LULC mapping and change detection. In particular, we highlight the possibility of using medium-resolution (Landsat-like, 10–30 m) time series and multispectral optical data provided by the harmonization between these sensors and data cube architectures for analysis-ready data that are permeated by publicizations, open data policies, and open science principles. We also reinforce the potential for exploring more spectral bands combinations, especially by using the three Red-edge and the two Near Infrared and Shortwave Infrared bands of S2/MSI, to calculate vegetation indices more sensitive to phenological variations that were less frequently applied for a long time, but have turned on since the S2/MSI mission. Summarizing peer-reviewed papers can guide the scientific community to the use of L8/OLI and S2/MSI data, which enable detailed knowledge on LULC mapping and change detection in different landscapes, especially in agricultural and natural vegetation scenarios.
doi:10.3390/rs12183062 doaj:b5d54af4fbbe45518fa7c16a3fe25aa7 fatcat:l5bkzuvjx5eu3e5zt4j2h6cgei