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Abstract

We focus on scaling up fact checking to very large document collections. Given a computational cost
budget, our goal is to find a maximal number of instances of misinformation. We present the WebChecker,
a platform that leverages indexes, cheap filters, and matching methods with various cost-accuracy
tradeoffs to maximize fact checking efficiency. It uses a reinforcement learning based optimizer to find
optimal checking plans. In our experiments, we use an early prototype to find misinformation on the
Web, exploiting Google search to retrieve Web documents and pre-trained language models to identify
problematic text snippets within them. WebChecker finds significantly more matches per time unit,
compared to naive baselines, and reliably identifies near-optimal checking plans within its plan space.

1 Introduction

Misinformation on the Web can have disastrous consequences [32]. Major Web companies such as Google,
Facebook, and Twitter have recently taken steps to protect their user base from being served misleading content [17,
44]. However, those efforts still rely significantly on teams of human fact checkers who are all too often
overwhelmed by the scale at which misinformation propagates [36, 46]. Over the past years, this has motivated
significant research on automated fact checking methods [10], in industry as well as in academia.

At its core, automated fact checking requires analyzing natural language text (for instance, in order to verify
whether a given claim is equivalent to a previously verified one). The area of natural language processing (NLP)
has recently seen significant progress. In particular, large pre-trained models based on the Transformer [43]
architecture have advanced the state of the art in multiple sub-areas of NLP [16,47] and achieve near human-level
performance for various NLP tasks [5, 28].

The increased accuracy of recent NLP approaches comes, however, at a price. State-of-the-art performance
often requires large neural networks with hundreds of millions [7] to hundreds of billions of parameters [9].
Inference via such models is costly. Applying such models naively to large collections of documents (for fact
checking or other tasks) is prohibitively expensive. Prior work on automated fact checking has often focused on
verifying single claims. Here, given methods to verify single claims, we are interested in scaling up automated
checking to large collections of documents, even up to Web scale. In order to do so, we leverage classical
techniques from the database community, in particular query planning [37] and adaptive processing [3].
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We describe and evaluate a first prototype of the WebChecker, a platform aimed at misinformation detection
in very large document collections. Of course, finding all mistakes in a sufficiently large set of documents (say,
the Web) is not realistic. Hence, our goal is to find the maximal number of instances of misinformation under a
fixed, computational budget instead. As an extension, we may assign different weights to different instances of
misinformation and prioritize search accordingly.

As one possible use case, we envision WebChecker as a means to trigger corrective actions quickly if
misinformation is detected. For instance, WebChecker could notify Wikipedia administrators if factual mistakes
appear on pages that fall within their core domain. Alternatively, WebChecker could create tags requesting
verification by volunteers from the Wikipedia community. Similarly, WebChecker could be applied to verify
content on large Web platforms such as Twitter, notifying internal fact checker teams of potentially problematic
content (triggering platform-specific counter-measures). Note that new content is generated at a regular pace in
all of the aforementioned use cases. This means that fact checking is a continuous process, rather than a one-time
operation. This makes computational efficiency, our focus, key.

The WebChecker takes as input a repository containing misinformation and a collection of documents. Its
goal is to match text snippets in documents to entries in the repository. To do so efficiently, WebChecker uses a
collection of fact checking methods, including high and low precision matching methods, cheap, heuristic filters,
and indexes. A-priori, it is unclear which combination of methods maximizes the number of matches found
within the cost budget. WebChecker therefore uses an adaptive processing approach, switching between different
processing plans to sample their quality. To decide which plans to try next, WebChecker uses reinforcement
learning methods.

We evaluate an early prototype of WebChecker experimentally (source code for this prototype is available
at https://github.com/itrummer/WebChecker). We show that plan choices have significant impact on the
number of matches found (up to two orders of magnitude). Furthermore, we show that WebChecker successfully
converges to near-optimal plans via reinforcement learning. At the same time, our experimental results point at
important avenues for improvements.

The remainder of this paper is organized as follows. We introduce our problem model formally in Section 2.
In Section 3, we give a high-level overview of the WebChecker prototype. In Section 4, we describe the space
of misinformation detection plans considered by the prototype. Then, in Section 5, we describe the adaptive
processing approach used to identify promising plans. We present first experimental results in Section 6. Finally,
we discuss related work in Section 7 and conclude with future work plans in Section 8.

2 Problem Model and Terminology

Our goal is to find misinformation in a document collection. We detect misinformation at a fine granularity,
verifying specific text snippets (as opposed to classifying entire documents as fake news). We consider large
document collections (up to “Web-scale”) where verifying each single text snippet naively is prohibitively
expensive. Hence our focus on maximizing detection efficiency. To identify misinformation, we compare against
entries in a so-called anti-knowledge base [24] (also known as “negative knowledge” [2]), defined next.

Definition 1 (Anti-Knowledge Base, Anti-Fact): An Anti-Knowledge Base (AKB) is a collection A of Anti-
Facts, each one representing a piece of information known to be wrong. Each anti-fact a ∈ A is expressed as a
subject-predicate-object triple a = 〈S, P,O〉. It expresses a relationship between subject and object that does not
hold. In addition, each anti-fact may be associated with one or multiple tags (expressing for instance the source
from which the anti-fact was mined).

We assume that anti-facts are indexed by tags such that anti-facts with specific tags can be retrieved efficiently.
Our goal is to match AKB entries to text snippets in the aforementioned document collection.
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Definition 2 (AKB Match): An AKB Match is described as a pair 〈a, s〉 where a ∈ A is an anti-fact from the
AKB, s ∈ D is a text snippet (e.g., a single sentence) from the document collection D. Snippet and anti-fact are
related in that the text describes the anti-fact, i.e. the text snippet contains misinformation.

Identifying matches between AKB entries and text snippets requires natural language analysis. This field
has advanced quickly in recent years, seeing widespread adoption of novel and promising methods such as the
Transformer architecture [43]. Nevertheless, analysis precision is still not perfect, leading to erroneous matches.

Definition 3 (Matching Precision, False Positive): With regards to a set of (potential) matchesM = {〈ai, si〉},
we call the ratio of true matches the Matching Precision. We call any pair 〈a, s〉 ∈M where s does not express
the anti-fact a a False Positive. We compare different matching methods by their (expected) matching precision.

Setting a different precision target allows adapting WebChecker to different scenarios (e.g., increasing recall
at the expense of precision if potential matches are shared with a large crowd for verification while preferring few,
high-precision matches if results are forwarded to a small team of fact checkers).

Given many documents and AKB entries, it is often not realistic to find all instances of misinformation.
Hence, we must focus our efforts on high-priority instances. To do so, we introduce a weighted recall metric.

Definition 4 (Match Weighting Function): The detection process can be configured by providing a Match
Weighting Function. This function assigns each AKB match to a weight, expressing importance of the match.
The match weighting function wM :M 7→ R+ assigns AKB matches m ∈M to a numerical, positive weight.
The weight of a match 〈a, s〉 is the product of two weight functions, wA and wS , assigning a weight for the AKB
entry and the text snippet respectively (i.e., wM (〈a, s〉) = wA(a) · wS(s)).

The weighting function wA allows assigning higher weights for misinformation that relates to specific topics
(e.g., for anti-facts about the Coronavirus that may accelerate the spread). Weighting function wS allows assigning
higher weights for specific Web sites (e.g., to prioritize highly visible Web sites where misinformation could be
particularly harmful). WebChecker prioritizes highly weighted matches in its search. More precisely, it processes
detection tasks as defined next.

Definition 5 (Detection Task, Detection Result): A Detection Task is defined by a tuple 〈A,D, t, wM , b〉. Here,
A is an anti-knowledge base and D a collection of documents. Threshold t lower-bounds expected matching
precision (thereby restricting the selection of matching methods) while wM assigns weights to matches. Finally, b
is a cost budget limiting computational overheads. The Detection Result is a setM of matches, ideally maximizing∑

m∈M wM (m) under cost budget b while respecting precision threshold t.

3 System Overview

Figure 1 shows a high-level overview of the WebChecker system. Next, we describe its context and components
quickly. In the following sections, we discuss specific components in more detail.

WebChecker accesses two large repositories: an anti-knowledge base (AKB), containing known misinforma-
tion, and a large document collection. WebChecker searches for text snippets in the document collection that
match entries in the AKB. More precisely, it processes detection tasks, specified by a user. A detection task is
characterized by a matching precision threshold, a function assigning weights to matches, and a cost budget (see
Definition 5 for further details). The output is a set of matches, linking text snippets to AKB entries.

The goal of WebChecker is to find a set of matches that maximize accumulated weight, while staying within
the cost budget. Furthermore, the result matches must be verified by a verification method that complies with the
precision constraints. WebChecker uses several techniques to find high-quality matches efficiently.
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Figure 1: Overview of WebChecker system architecture.

First, WebChecker uses indexes to access subsets of anti-facts and documents efficiently. AKB entries are
associated with tags, indicating for instance the source from which AKB entries have been extracted or the type of
claim (e.g., distinguishing claims about numerical properties from claims about entity-to-entity relationships [24]).
AKB entries are indexed, making it efficient to retrieve all entries associated with specific tags. On the other side,
we assume that documents are indexed by keywords (e.g., by a Web search engine). This allows WebChecker to
efficiently retrieve documents likely to contain matches for specific anti-facts. Second, WebChecker may use
heuristic filters to narrow down the set of anti-facts and text snippets. Doing so is beneficial if it reduces the
number of (more expensive) follow-up operations.

Ultimately, all result matches must satisfy an entailment check. Here, WebChecker verifies via natural
language analysis whether specific text snippets entail AKB entries. If so, the corresponding snippet contains
misinformation. Checking entailment via large neural networks (e.g., via Roberta [30]) is computationally
expensive. Hence, WebChecker may use cheap but less precise checks to narrow down the focus for expensive
checks. For instance, those checks may include simple checks for word overlap between AKB entry and
text snippet. Alternatively, they may include checks via size-reduced language models that trade accuracy for
overheads (e.g., via approaches such as Albert [26] and Distilbert [34]).

WebChecker has various options to process a given detection task. For instance, WebChecker can select the
anti-facts for which to search matches via Web search (the optimal choice depends on the anti-fact weight as
well as on the prevalence). Also, Web Checker may decide whether or not to activate heuristic filters and which
sequence of entailment checks to perform. To make theses and other optimization choices, WebChecker uses a
planning component.

Optimal planning decisions depend on factors that are unknown a-priori. For instance, it is difficult to
estimate the prevalence of specific anti-facts. WebChecker does not assume that such statistics are available
before processing starts. Instead, it learns to make near-optimal planning decisions via trial and error. The
WebChecker planner uses an iterative algorithm. In each iteration, it uses a fixed percentage of the processing
budget to find a maximal number of AKB matches. The accumulated weight of all matches retrieved in a single
iteration serves as reward function in a reinforcement learning framework [40]. Thereby, existing algorithms
from the reinforcement learning domain can be used to converge to optimal planning decisions (associated with
maximal reward). Planning is described in more detail in Section 5.

4 Detection Plans

WebChecker processes detection plans to identify misinformation. We discuss their structure next.
Our goal is to match anti-facts in an anti-knowledge base A to text snippets in a document collection D. We
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assume an entailment check e is available that checks if a given text snippet entails a given anti-fact (if so, the
text snippet contains misinformation). In its simplest form, a detection plan may be executed as a join between
anti-facts and snippets, using the entailment check as join condition, i.e.

A ./e D.

The type of entailment check is restricted by the user-specified precision threshold t. For a low-precision threshold,
relatively cheap entailment checks (e.g., via distilled language models such as DistilBERT [34]) can be used.
Also, instead of a single entailment check, we can use a sequence of more and more expensive entailment checks,
reserving expensive checks to matches that pass the cheaper tests. In doing so, we may reduce recall (due to false
negatives of cheaper filters) but not precision (as long as the final filter satisfies the precision threshold). If cheap
filters are sufficiently selective, overall efficiency increases.

We can use indexes on anti-facts as well as text documents to speed up matching. We consider scenarios
where the document collection to analyze is extremely large. It is not realistic to create specific indexes for
WebChecker on the entire Web. Fortunately, large parts of the Web have been indexed for keyword search by
search engine providers such as Google or Microsoft. We assume that such an index is used to retrieve relevant
documents for a given anti-fact. We denote the function that maps an anti-fact a to a keyword query as iD(a).
For instance, we can form this keyword query by concatenating subject, predicate, and object keywords from
the triple associated with a. Alternatively, we can use keywords from only a subset of those three components.
WebChecker may create one or multiple indexes on anti-facts, indexing them for instance by mining source or
topic. By iA, we denote a condition on anti-facts that can be evaluated using an index on anti-facts. For instance,
we can retrieve anti-facts from a specific source or of a specific type. In summary, plans with index usage can be
described by the following expression:

σiA(A) ./e σiD(a)(D).

They are evaluated by retrieving single anti-facts satisfying condition iA, then retrieving matching documents
from D for each anti-fact a.

Finally, we can exploit cheap heuristics to filter out anti-facts and text snippets. We are interested in filtering
out anti-facts that are unlikely to generate matches. Also, we want to filter text snippets that are unlikely to
contain misinformation. We denote by hA a heuristic filter on anti-facts and by hD a heuristic filter on text
snippets. For instance, we can exploit previously proposed methods for identifying check-worthy claims [15]
to filter text snippets. For filtering anti-facts, we can exploit insights on which anti-fact properties make them
likely to propagate (e.g., we show in prior work that mistakes are more likely for certain types of entities and
predicates [24]). In summary, plans using heuristics and indexes can be written as

σhA(σiA(A)) ./e σhD(σiD(a)(D)).

WebChecker evaluates such plans by first using the index on A to retrieve anti-facts satisfying iA and then filtering
anti-facts via hA. For each resulting anti-fact a, WebChecker uses the document index (i.e., the search engine) to
retrieve documents satisfying iD (up to a maximal number of documents) before filtering associated text snippets
using heuristic hD. Finally, the entailment checks e are executed between a and each remaining text snippet.
Each snippet that entails a is added to the set of result matches.

5 Adaptive Planning and Processing

We discussed the general structure of detection plans in the previous section. That structure leaves open several
optimization decisions. First, we can choose which filters (if any) to use on anti-facts and text snippets (heuristic
filters and index-based filters). We assume that a set of alternatives is available for each type of filter (we discussed
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Algorithm 3: Adaptive processing algorithm used by WebChecker.

1 WebChecker(A,D, t, wM , b) begin
2 M ← ∅; // Initialize AKB matches
3 while Cost budget b not reached do
4 p← SelectPlan(A,D, t); // Select plan via RL
5 N ← EvalOnSample(p, t); // Evaluate new plan
6 r ←

∑
n∈N wM (n); // Calculate reward value

7 UpdateStats(p, r); // Update RL statistics
8 M ←M ∪N ; // Add new matches

9 return M ; // Return detection result

some alternatives in Section 4). Second, we can choose the sequence of entailment checks. Of course, any filter
(or additional entailment check) tends to decrease the total number of matches if processing all anti-facts and text
snippets. However, it is not realistic to search the entire Web. Instead, our goal is to maximize the number of
matches found until the cost budget runs out. Given the cost budget, filters can increase the number of matches
found as they help us focus our efforts on the most relevant AKB entries and text snippets.

Following Definition 5, the best plan maximizes the accumulated weight of all matches found under the cost
budget. To select optimal plans, we would need to know the cost and accuracy of filter operations and entailment
checks, as well as the frequency at which certain types of misinformation appear on the Web. In particular, having
the latter kind of information about a large and dynamic document collection such as the Web does not seem
realistic. This motivates a more flexible processing strategy that adapts to information gained at run time. More
precisely, WebChecker implements the adaptive processing strategy described as Algorithm 3.

Given an anti-knowledge base A, a document collection D, a precision threshold t, a match weighting
function wM , and a cost budget b as input, WebChecker iterates until the cost budget is depleted (our current
implementation measures cost as run time while other metrics, such as monetary processing fees, could be used
instead). In each iteration, WebChecker picks a detection plan p and uses it for a limited amount of processing (in
our current implementation, we limit ourselves to one AKB entry per iteration and 30 seconds of Web search
time). The Web matches resulting from processing are added to the result set.

In each iteration, WebChecker picks plans based on statistics collected while processing the current detection
task. In doing so, it faces the so-called exploration-exploitation dilemma: we have a tension between selecting
plans that have worked well so far and selecting plans about which little is known (e.g., since they have not been
tried yet). Reinforcement learning is the classical framework used to resolve this kind of tension in a principled
manner. Hence, we apply a reinforcement learning algorithm to select the next plan to try in each iteration. As
reward function (quantifying the quality of a plan), we use the sum of weights over all matches found in a given
iteration. The reinforcement learning algorithm will therefore converge towards plans that return more and higher
weighting matches.

More formally, the environment for a reinforcement learning algorithm is typically described as a Markov
Decision Process (MDP). An MDP is defined by a tuple 〈S,A, T ,R〉 of states S, actions A, transitions T ,
and reward function R. In our case, states correspond to vectors 〈v1, . . . , vn〉 ∈ Nn where each component
v1, ..., vn−1 represents a plan property and vn represents the plan property to decide next. Actions represent
alternative values for the next plan property. The transition function maps a state 〈v1, . . . , vi, . . . , vn−1, i〉 and
an action a to the state 〈v1, . . . , a, . . . vn−1, i + 1〉 (i.e., we set the value specified by the action and advance
to the next plan property). After determining the last plan property, the current episode ends and the specified
plan is evaluated. The reward for any transition is zero except for the last transition in an episode. For the last
transition, the reward corresponds to the sum of weights over all matches collected by the specified plan in the
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Figure 2: Number of misinformation matches found on the Web during one hour of processing time for 32
different plans. The red lines mark the number of matches found when optimizing the plan via reinforcement
learning in three consecutive runs (solid line marks median).

current iteration. The transition function is deterministic while the reward function is stochastic (since using the
same detection plan on different AKB entries in different iterations may yield a different number of matches).

6 Experimental Results

We report first experimental results for an early prototype of WebChecker. The prototype is implemented in
Python 3. The source code is publicly available (https://github.com/itrummer/WebChecker).

The prototype uses an AKB consisting of over 100,000 entries (publicly available online at https://
github.com/cornelldbgroup/AntiKnowledgeBase). Those entries were mined from Wikipedia update logs
using the process described by Karagiannis et al. [24]. For querying the Web, the prototype uses Google’s
programmable search engine API [12]. For natural language processing, it uses Transformer models via the
Huggingface Transformers library [47]. The prototype uses Stable Baselines 3 [39] for reinforcement learning.
The experiments were executed on a p3.2xlarge EC2 instance with Tesla V100 GPU.

The prototype considers the following plan space properties. First, AKB entries are indexed by their type,
distinguishing mistakes with incorrect numbers (e.g., incorrect birth dates) from mistakes with incorrect entities
(e.g., an incorrect location for the headquarters of a company). The prototype may choose between those two
categories to maximize detection yield. Second, the prototype may choose to filter AKB entries to the ones
with long text (the intuition being that Web search results tend to be more specific and relevant for such triples).
Third, the prototype may choose how to construct Web queries for a given AKB triple. In the current version,
we consider two simple variants (either using quotes around triple subject and triple object or no quotes at all).
Fourth, the WebChecker prototype may choose to filter Web results to Web sites with relatively small text content.
Intuitively, more small Web sites can be processed for a fixed time limit, reducing the risk of investing significant
computational resources into a Web site that turns out to be irrelevant. Finally, the prototype considers two
different sequences of entailment checks. The first version directly applies a large Roberta model [30], pre-trained
on MNLI (https://huggingface.co/roberta-large-mnli), to check whether a Web sentence entails the
concatenation of components of an AKB triple. The second version performs a cheaper check first (testing for
a sufficient ratio of overlapping words between triple and sentence). It applies the model-based test only if the
cheaper one succeeds.
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AKB Entry (with Correction) Web Match (with URL)

MCS6501 microprocessors, was in,
July 24 1974 issue of Electronics
magazine [Correct: July 24 1975]

One of the earliest was a full-page story on the MCS6501 and
MCS6502 microprocessors in the July 24, 1974 issue of Electron-
ics magazine [https://en-academic.com/dic.nsf/enwiki/
12304]

Biraj Bahu, is, 1955 Hindi film [Cor-
rect: 1954]

... and Biraj Bahu (1955), which won her the Filmfare Best Actress
Award in 1955 [https://en.wikipedia.org/wiki/Kamini_
Kaushal]

Haflioi Hallgrimsson, currently lives
in, Edinburgh [Correct: Bath]

Haflioi Hallgrimsson, an Icelandic composer, currently living in
Edinburgh [https://en.wikipedia.org/wiki/Icelandic_
diaspora]

Acorda Therapeutics, is, biotechnol-
ogy company based in Hawthorne
[Correct: Ardsley]

Acorda Therapeutics (NASDAQ: ACOR, FWB: CDG)
is a biotechnology company based in Hawthorne, New
York [https://www.morebooks.de/store/fr/book/
acorda-therapeutics/isbn/978-620-1-18842-6]

Table 14: Examples of Web matches found by WebChecker (all links were verified on 6/10/2021).

Considering binary choices for all five plan properties, the prototype considers a plan space of size 32 in total.
In a first test, we ran all detection plans with a timeout of one hour per plan (we set a timeout of 30 seconds for
finding matches for a single AKB entry and restrict the number of considered AKB entries to 120). The goal was
to verify that planning choices have significant impact on the number of matches found. In a second test, we use
the AC2 [31] reinforcement learning algorithm to make planning choices automatically (using the number of
Web matches found as reward function). Note that we use uniform weights for those initial experiments (i.e.,
every Web match counts equally). Also, we do not explicitly consider precision thresholds (all possible plans use
the same, final entailment check via the Roberta Transformer). Adding more fine-grained precision control is one
of the future work avenues discussed in Section 8.

Figure 2 shows the results of both experiments. The y axis represents the number of Web matches found
within one hour. The x axis describes plans in short notation (each letter describes one plan property in the
following order): N for number mistakes versus E for entity mistakes, A for all triples versus L for long triples, N
for non-quoted versus Q for quoted Web queries, A for all versus S for short Web sites, and H for (direct) high
precision entailment checks versus L for an initial low-precision check. The solid red line represents the median
number of matches found in three consecutive runs when using reinforcement learning for planning (dashed lines
represent the number of matches for the other two runs).

The number of matches found by different plans differs by two orders of magnitude (ranging from three
matches for plan NLQSH to 212 for plan ELNAH). For instance, AKB entries indexed as entity-related mistakes
tend to produce more Web matches, compared to number-related mistakes (24 versus 98 matches when averaging
over all plans). As another example, leaving out quotes in Web queries tends to increase recall significantly (91
versus 31 matches in average over all plans). Note, however, that different planning choices are dependent on
each other and cannot be easily separated (e.g., enabling low-precision checks increases recall in many cases but
not in all). This motivates the use of sophisticated planning approaches.

Reinforcement learning consistently finds plans with a quality (i.e., number of matches) significantly above
average. In all three runs, the plans produced via reinforcement learning were better than 25 out of 32 plans with
a median of 112 matches (compared to a median of 35 matches over all plans). This shows that reinforcement
learning is suitable for finding good plans within the detection plan space.
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Table 14 shows example matches found by WebChecker. Clearly, matches found cover a variety of topics
(reflecting the diversity of content of the AKB we use). The current prototype uses the same final entailment
check for all candidate matches. Nevertheless, planning choices may influence not only recall but also precision
of the final result. We hand-verified entailment for a sample of 20 matches from the plan generating most matches
(ELNAH) and hand-verified all matches for the plan generating the least matches (NLQSH). We found a precision
of 100% for the latter but only a precision of 24% for the former. While our sample is small, this indicates that
more work is needed to optimize precision during retrieval. We discuss first ideas in Section 8.

7 Related Work

Our work connects to a large body of recent work that exploits machine learning for automated fact-checking [6,
18, 22, 27, 29], including work focused on the platforms we cite as motivating use cases [19, 35]. In particular, our
research connects to prior work using language models for fact checking [6, 27]. We refer to recent surveys for a
detailed overview of corresponding approaches [4, 38]. What distinguishes our work from prior contributions is
our focus on computational efficiency, exploiting ideas from the database community to scale up automated fact
checking.

We use Web search for automated fact checking. That connects our work to prior checking methods based on
Web search engines [8, 11, 45]. However, prior work typically uses Web search to retrieve relevant documents for
verifying a given claim. Instead, we use it to retrieve instances of misinformation from the Web. In that, our work
is similar to the one by Elyashar et al. [8]. Here, the focus is on collecting fake news documents via Web search.
However, our work differs as Web search is only one step in a multi-step verification pipeline. Our contribution is
in an infrastructure that takes planning decisions maximizing misinformation retrieval efficiency.

Multiple branches of prior work could be used to extend WebChecker. For instance, a popular branch of fact
checking research focuses on identifying check-worthy claims [13–15, 33]. If sufficiently efficient, such methods
can be used as filters on Web results before applying more expensive verification methods. Also, we currently
identify misinformation by comparing against entries in an AKB [1,2, 24]. In future work, we may consider other
verification sources such as knowledge graphs [29] or relational databases [13, 20, 22, 23].

Finally, we use techniques from the database area to make large-scale fact checking efficient. In particular, we
exploit adaptive processing and query planning techniques [3, 41, 42]. Reinforcement learning has been used for
optimizing adaptive query plans before [42]. However, our plan space, processing engine, and reward function
are specific to the domain of fact checking. Our goal is not to process all input data for a given query. Instead, it
is to produce the maximal number of matches until a time budget runs out. More broadly, our work is part of a
research direction that transfers techniques from the database community to new use cases (e.g., recent work
exploiting declarative query optimization to make visual data processing more efficient [21, 25]). In this case, we
transfer ideas such as query planning to the domain of automated fact checking.

8 Conclusion and Outlook

Our goal is to make large-scale, automated fact checking efficient. We present a first prototype of WebChecker,
a system that searches for misinformation in a large document collections while minimizing computational
overheads. To do so, WebChecker exploits a diverse set of operators and an adaptive optimizer to choose between
them.

We observe the following in our experiments. First, planning choices can significantly impact efficiency
in automated fact checking. Comparing best and worst plans, we find a two orders of magnitude difference
in computational overheads per (misinformation) detection. Second, we find that adaptive processing and
reinforcement learning are effective at identifying good detection plans. While less efficient than the optimum by
a factor of about two (rate of detection), learned plans outperform the majority of plans in the plan space.
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Our current prototype does not yet support user-defined precision constraints (we outline in Section 2 why
such constraints are required to adapt WebChecker to different scenarios). Also, our experiments indicate that
output precision depends on various plan properties (beyond the final entailment check). In a first approach, we
plan to consider operator-specific accuracy statistics (gained, for instance, via small-scale experiments on pieces
of misinformation for which manually generated ground truth is available) during planning. Alternatively, we
plan to explore approaches that use feedback by crowd workers on result samples to evaluate plan precision.
Beyond precision, we plan to increase computational efficiency by expanding WebChecker’s set of operators
(e.g., by adding entailment checks by smaller models [26, 34] as optional filters). Also, we plan to study parallel
processing as a means to increase verification throughput.
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