An ultrafast wide-band millimeter-wave (MMW) polarimetric radar for remote sensing applications

A.Y. Nashashibi, K. Sarabandi, P. Frantzis, R.D. De Roo, F.T. Ulaby
2002 IEEE Transactions on Geoscience and Remote Sensing  
With the advent of high-frequency radio frequency (RF) circuits and components technology, millimeter-wave (MMW) radars are being proposed for a large number of military and civilian applications. Accurate and high-resolution characterization of the polarimetric radar backscatter responses of both clutter and man-made targets at MMW frequencies is essential for the development of radar systems and optimal detection and tracking algorithms. Toward this end, a new design is developed for
more » ... eloped for ultrafast, wide-band, polarimetric, instrumentation radars that operate at 35 and 95 GHz. With this new design, the complete scattering matrix of a target (magnitude and phase) can be measured over a bandwidth of 500 MHz in less than 2 s. In this paper, the design concepts and procedures for the construction and calibration of these radars are described. In addition, the signal processing algorithm and data-acquisition procedure used with the new radars are presented. To demonstrate the accuracy and applicability of the new radars, backscatter measurements of certain points and distributed targets are compared with their analytical radar cross section (RCS) and previously measured values, respectively, and good agreements are shown. These systems, which can be mounted on a precision gimbal assembly that facilitates their application as high-resolution imaging radar systems, are used to determine the MMW two-way propagation loss of a corn field for different plant moisture conditions.
doi:10.1109/tgrs.2002.802462 fatcat:4skbs5e34bgqblicfswy4hixkq