Solidification of iron-rich intermetallic phases and their effects on tensile properties in Al-Cu 206 cast alloys / [book]

Kun Liu
2012 unpublished
The Al-Cu 206 cast alloys have been widely used in automotive and aerospace industries due to the high strength and good elevated temperature properties. However, this family alloys have an extremely low upper limit for the iron content (usually less than 0.15 wt. %) because the presence of more Fe can cause a great loss of the mechanical properties, particularly the ductility. With the increasing use of the recycled aluminum alloys, the requirement for extremely low iron contents has become a
more » ... tents has become a main concern in terms of the manufacturing technique and cost. Therefore, manufacturing premium castings with higher iron contents has become a great challenge. In this study, the solidification behavior of the iron-rich intermetallics and the effect of alloy composition, cooling rate and solution heat treatment on the iron-rich intermetallics were systematically investigated in 206 cast alloys at 0.15, 0.3 and 0.5 wt. % Fe. The effect of the iron-rich intermetallics on the tensile properties was also evaluated. An optical microscope, a scanning electron microscope and a transmission electron microscope were used to observe the microstructures and analyze the volume fraction of the iron-rich intermetallics as well as the fracture surface. The solidification sequences of 206 cast alloys at 0.15-0.5 wt. % Fe were well established. The experimental results in the present thesis are divided into four parts. In the first part, the iron-rich intermetallics in 206 cast alloys at 0.15 wt. % Fe were studied. It was found that Chinese script a-Fe and platelet-like P-Fe can precipitate and coexist in the finally solidified alloy and the individual addition of either Mn or Si promotes the formation of a-Fe and hinders the occurrence of P-Fe. The critical cooling rate to effectively suppress the formation of p-Fe depends on the alloy composition. A casting process map is established to correlate the Mn and Si contents with cooling rate for the 206 cast alloys. In the second part, the iron-rich intermetallics in 206 cast alloys at 0.3 wt. %
doi:10.1522/030518413 fatcat:k7lvesjymvdv7jnkhtfecwtuju