Incompleteness in a General Setting

John L. Bell
2007 Bulletin of Symbolic Logic  
Full proofs of the Gödel incompleteness theorems are highly intricate affairs. Much of the intricacy lies in the details of setting up and checking the properties of a coding system representing the syntax of an object language (typically, that of arithmetic) within that same language. These details are seldom illuminating and tend to obscure the core of the argument. For this reason a number of efforts have been made to present the essentials of the proofs of Gödel's theorems without getting
more » ... red in syntactic or computational details. One of the most important of these efforts was made by Löb [8] in connection with his analysis of sentences asserting their own provability. Löb formulated three conditions (now known as the Hilbert-Bernays-Löb derivability conditions), on the provability predicate in a formal system which are jointly sufficient to yield the Gödel's second incompleteness theorem for it. A key role in Löb's analysis is played by (a special case of) what later became known as the diagonalization or fixed point property of formal systems, a property which had already, in essence, been exploited by Gödel in his original proofs of the incompleteness theorems. The fixed point property plays a central role in Lawvere's [7] category-theoretic account of incompleteness phenomena (see also [10]).
doi:10.2178/bsl/1174668216 fatcat:ntfavuap6nbkvdp6hylo757al4