Particle Smoother-Based Landmark Mapping for the SLAM Method of an Indoor Mobile Robot with a Non-Gaussian Detection Model

Jun Wang, Yasutake Takahashi
2019 Journal of Sensors  
HF-band radio-frequency identification (RFID) is a robust identification system that is rarely influenced by objects in the robot activity area or by illumination conditions. An HF-band RFID system is capable of facilitating a reasonably accurate and robust self-localization of indoor mobile robots. An RFID-based self-localization system for an indoor mobile robot requires prior knowledge of the map which contains the ID information and positions of the RFID tags used in the environment.
more » ... environment. Generally, the map of RFID tags is manually built. To reduce labor costs, the simultaneous localization and mapping (SLAM) technique is designed to localize the mobile robot and build a map of the RFID tags simultaneously. In this study, multiple HF-band RFID readers are installed on the bottom of an omnidirectional mobile robot and RFID tags are spread on the floor. Because the tag detection process of the HF-band RFID system does not follow a standard Gaussian distribution, extended Kalman filter- (EKF-) based landmark updates are unsuitable. This paper proposes a novel SLAM method for the indoor mobile robot with a non-Gaussian detection model, by using the particle smoother for the landmark mapping and particle filter for the self-localization of the mobile robot. The proposed SLAM method is evaluated through experiments with the HF-band RFID system which has the non-Gaussian detection model. Furthermore, the proposed SLAM method is also evaluated by a range and bearing sensor which has the standard Gaussian detection model. In particular, the proposed method is compared against two other SLAM methods: FastSLAM and SLAM methods utilize particle filter for both the landmark updating and robot self-localization. The experimental results show the validity and superiority of the proposed SLAM method.
doi:10.1155/2019/3717298 fatcat:dkm4ceexfjf53gyrndkgebls7a