A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Machine Learning at the Network Edge: A Survey
[article]
2021
arXiv
pre-print
Resource-constrained IoT devices, such as sensors and actuators, have become ubiquitous in recent years. This has led to the generation of large quantities of data in real-time, which is an appealing target for AI systems. However, deploying machine learning models on such end-devices is nearly impossible. A typical solution involves offloading data to external computing systems (such as cloud servers) for further processing but this worsens latency, leads to increased communication costs, and
arXiv:1908.00080v4
fatcat:mw4lwwvzf5gupjr6pgdgnabeuu