Advances in Sprite-based Video Coding - Towards Universal Usability [article]

Matthias Kunter, Thomas Sikora, Technische Universität Berlin, Technische Universität Berlin
2008
This dissertation presents new approaches end extended techniques for the coding of digital video using background sprites, also called background mosaics. Sprites form a visual summarization of the rigid background of a captured scene shot. They are represented in oversized images, which preferably do not contain any foreground objects. This type of redundancy reduction is an ideal tool for video coding since the complete background information can be stored in the sprite image and some
more » ... age and some additional projection parameters. However, the generation of sprites is only possible for certain scenes. Since a successful coding strategy has to be universally applicable, the development of techniques for facilitating a broader use of sprite-based video coding represents the main focus of this thesis. Early approaches, as the one adopted in the MPEG-4 standard, have not been utilized due to the lack of universality and usability. For this purpose, we present techniques for the generation of multiple sprites and provide automatic segmentation approaches for the independently moving foreground objects. While multiple sprites prevent the construction of degenerated sprites and simultaneously minimize the impact of geometrical distortions, the segmentation enables the automatic discrimination in foreground and background objects. Thus, it is a fundamental tool for object-based video coding. The presented segmentation techniques are built upon the background sprites and thus, are easy to integrate into the overall coding process. The improvement of the background modeling using sprites marks another important aspect of this dissertation. Since state-of-the-art hybrid coding strategies work very efficient and yield high quality results, the prediction quality of the background using sprites has to be improved remarkably. In order to achieve this goal, we present novel image registration and sprite generation algorithms. Especially the potential of super-resolution processing will be exploited. Due to the capturing process, we obtai [...]
doi:10.14279/depositonce-1782 fatcat:epmaaq7flzguli7xqdilraudka