The Influence of the Structural and Morphological Properties of WO3 Thin Films Obtained by PLD on the Photoelectrochemical Water-Splitting Reaction Efficiency

Florin Andrei, Andreea Andrei, Ruxandra Birjega, Eduard Nicolae Sirjita, Alina Irina Radu, Maria Dinescu, Valentin Ion, Valentin-Adrian Maraloiu, Valentin Şerban Teodorescu, Nicu Doinel Scarisoreanu
2021 Nanomaterials  
Due to its physical and chemical properties, the n-type tungsten oxide (WO3) semiconductor is a suitable photoanode for water decomposition reaction. The responses of the photoelectrochemical PEC water-splitting properties as an effect of structural and optical changes of WO3 thin films, as well as the nature of electrolyte solutions, were studied in this work. The WO3 thins films have been obtained by pulsed laser deposition (PLD) on silicon (Si(001)) covered with platinum substrates using
more » ... e different laser wavelengths. As the XRD (X-ray diffraction) and XTEM (cross-section transmission electron microscopy) analysis shows, the formation of highly crystalline monocline WO3 phase is formed for the film deposited at 1064 nm wavelength and poor crystalline phases with a large ordering anisotropy, characteristic of 2D structures for the films deposited at 355 nm and 193 nm wavelengths, respectively. The photogenerated current densities Jph depend on the laser wavelength, in both alkaline and acidic electrolyte. The maximum values of the photocurrent density have been obtained for the sample prepared with laser emitting at 355 nm. This behavior can be correlated with the coherent crystallized atomic ordering that appear for long distances (10–15 nm) in the (001) plane of the monoclinic WO3 phase structure films obtained at 355 nm laser wavelength. All the samples show poor current density in dark conditions and they are very stable in both acidic and alkaline solutions. The highest photocurrent density value is obtained in acidic solution for the WO3 thin film prepared by 355 nm laser (29 mA/cm2 at 1.6 V vs. RHE (1.35 V vs. Ag/AgCl)).
doi:10.3390/nano11010110 pmid:33418853 fatcat:vefkryuhxbg27m3f4xrk2rqqfa