Evaluation of Different Methods for Estimating the Fraction of Sunlit Leaves and Its Contribution for Photochemical Reflectance Index Utilization in a Coniferous Forest

Huang, Qiu, Fan, Liu, Zhang
2019 Remote Sensing  
Proper determinations of light use efficiency (LUE) and absorbed photosynthetically active radiation (APAR) are essential for LUE models to simulate gross primary productivity (GPP). This study intended to apply the photochemical reflectance index (PRI) to track LUE or APAR variations in a subtropical coniferous forest using tower-based PRI and GPP measurements. To improve the ability of using PRI to track LUE or APAR, a two-leaf approach differentiating sunlit and shaded leaves was used to
more » ... ess the remote sensing and flux data. However, penumbra region, the 'grey region' between sunlit and shaded leaves, increases the difficulty for quantifying the fractions of sunlit and shaded leaves. Firstly, three methods with different ways on treating the penumbra region were investigated for estimating the fraction of sunlit leaves (PT). After evaluating the correlations between observed PRI (PRIobs) and inversely retrieved PRI (PRIinv) from estimated PT using the three methods, we found that treating a substantial portion of penumbra region as sunlit leaves was reasonable and using the ratio of canopy reflectance to leaf reflectance as PT was accurate and efficient. Based on this, we used the two-leaf approach to estimate the canopy-level PRI, aiming to evaluate the ability of using PRI as a proxy for LUE or APAR. Results showed that PRI was able to capture half-hourly and daily changes in LUE and APAR, and the two-leaf approach could enhance the correlations between PRI and both LUE and APAR at both half-hourly and daily time steps. Strong diurnal correlations (averaged R = 0.82 from 173 days) between two-leaf PRI and APAR were found on more than 80% days and the relationship between them over the whole study period was also very significant (R2>0.5, p<0.0001) regardless of different climate conditions, suggesting that the two-leaf PRI was probably a better proxy for APAR than for LUE at short-term scale as PRI mainly represented the absorbed energy allocated to photoprotection at short time scale and was a direct outcome driven by APAR. However, the scattered relationships of PRI with LUE and APAR indicated there were still many limitations in usage of PRI to accurately estimate physiological parameters affected by changing weather conditions, pigment pool size, etc., which needed further exploration.
doi:10.3390/rs11141643 fatcat:7tffse2h6rfpbeobqjhodcyofq