Visual Language-Aided Construction Fire Safety Planning Approach in Building Information Modeling

Numan Khan, Ahmed Khairadeen Ali, Si Van-Tien Tran, Doyeop Lee, Chansik Park
2020 Applied Sciences  
Fires pose an enormous threat to human safety and many spectacular fires in under-construction buildings were reported over the past few years. Many construction sites only rely on fire extinguishers, as under-construction buildings do not contain a permanent fire protection system. Traditional safety planning lacks a justified approach for the firefighting equipment installation planning in the construction job site. Even though many government agencies made safety regulations for firefighting
more » ... equipment installations, it is still a challenge to translate and execute these rules at the job site. Currently, the construction industry is devoted to discovering all the possible applications of Building Information Modelling (BIM) technology in the entire phases of the project life cycle. BIM technology enables the presentation of facilities in 3-D and offers rule-based modeling through visual programming tools. Therefore, this paper focuses on a visual language approach for rule translation and a multi-agent-based construction fire safety planning simulation in BIM. The proposed approach includes three core modules, namely: (a) Rule Extraction and Logic Development (RELD) Module, (b) Design for Construction Fire Safety (DCFS) Module, and (c) Con-fire Safety Plan Simulation (CSPS) Module. In addition, the DCFS module further includes three submodules, named as (1) Firefighting Equipment Installation (FEI) Module, (2) Bill of Quantities (BoQs) for firefighting Equipment (BFE) Module, and (3) Escape Route Plan (ERP) Module. The RELD module converts the OSHA fire safety rule into mathematical logic, and the DCFS module presents the development of the Con-fire Safety Planning approach by translating the rules from mathematical logic into computer-readable language. The three sub-modules of the DCFS module visualize the outputs of this research work. The CSPS module uses a multi-agent simulation to verify the safety rule compliance of the portable firefighting equipment installation plan the system in a BIM environment. A sample project case study has been implemented to validate the proof of concept. It is anticipated that the proposed approach has the potential to helps the designers through its effectiveness and convenience while it could be helpful in the field for practical use.
doi:10.3390/app10051704 fatcat:n7fkid4yundb5hwgjsctolaoyy