Comparison of passive microwave remote-sensing snow-depth products on Arctic sea ice

Chenlei Zhang, Qing Ji, Xiaoping Pang, Jie Su, Chang Liu
2019 Polar Research  
Changes in snow cover on the surface of Arctic sea ice affect the energy balance between the atmosphere and the ocean and play a vital role in the global climate system. Accurate snow depth is a precondition for representing thermodynamic processes in sea-ice systems and is helpful for estimating sea-ice thickness. To better apply Arctic snow-depth products released by different organizations, we compared four kinds of snow-depth products based on three kinds of passive microwave (PM) sensors
more » ... d evaluated them against the snow depth measured by ice mass-balance buoys (IMB snow depth) and Operation Ice Bridge airborne snow radar (OIB snow depth). The results show that the snow depths from the product released by the University of Bremen (UB) are larger than those by the National Snow and Ice Data Center (NSIDC) and National Aeronautics and Space Administration (NASA), with an average difference of 10 cm. Comparing the PM remote-sensing snow depths released by UB, NSIDC and NASA against IMB and OIB snow depths, it is found that NSIDC AMSR-E snow-depth product has the highest accuracy. Although these PM remote-sensing snow-depth products released by different organizations differ in accuracy, they all reflect the spatio-temporal variation characteristics of snow depth on Arctic sea ice. These comparisons and analysis of snow-depth products from different sensors released by different organizations provide a basis for further investigation of Arctic sea-ice thickness estimation and benefit the studies of Arctic sea ice and climate change.
doi:10.33265/polar.v38.3432 fatcat:osptigzlffb53noch2ftstlwga