The Internet Archive has a preservation copy of this work in our general collections. The file type is <code>application/pdf</code>.
Zero-groups and maximal tori
[article]
<span title="2005-11-07">2005</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
We give a presentation of various results on zero-groups in o-minimal structures together with some new observations. In particular we prove that if G is a definably connected definably compact group in an o-minimal expansion of a real closed field, then for any maximal definably connected abelian subgroup T of G, G is the union of the conjugates of T. This can be seen as a generalization of the classical theorem that a compact connected Lie group is the union of the conjugates of any of its maximal tori.
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/0511162v1">arXiv:math/0511162v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/7o3r6zxshfdsxjb5nc3akrgsiq">fatcat:7o3r6zxshfdsxjb5nc3akrgsiq</a>
</span>
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-math0511162/math0511162.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
File Archive
[PDF]
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/0511162v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>