Exploring the Relationship between Preprocessing and Hyperparameter Tuning for Vibration-Based Machine Fault Diagnosis Using CNNs

Jacob Hendriks, Patrick Dumond
2021 Vibration  
This paper demonstrates the differences between popular transformation-based input representations for vibration-based machine fault diagnosis. This paper highlights the dependency of different input representations on hyperparameter selection with the results of training different configurations of classical convolutional neural networks (CNNs) with three common benchmarking datasets. Raw temporal measurement, Fourier spectrum, envelope spectrum, and spectrogram input types are individually
more » ... are individually used to train CNNs. Many configurations of CNNs are trained, with variable input sizes, convolutional kernel sizes and stride. The results show that each input type favors different combinations of hyperparameters, and that each of the datasets studied yield different performance characteristics. The input sizes are found to be the most significant determiner of whether overfitting will occur. It is demonstrated that CNNs trained with spectrograms are less dependent on hyperparameter optimization over all three datasets. This paper demonstrates the wide range of performance achieved by CNNs when preprocessing method and hyperparameters are varied as well as their complex interaction, providing researchers with useful background information and a starting place for further optimization.
doi:10.3390/vibration4020019 fatcat:fr3coolp6ngrxjbtjdpd7ctrlu