Comparison Of K-E Turbulence Model Wall Functions Applied On A T-Junction Channel Flow

G. C. C. Fiuza, A. L. T. Rezende
2018 Zenodo  
The flow acting in a T-junction channel is present in several industrial applications, such as air conditioning systems, water cooling circuits, gas exhaust systems and others. In order to numerically simulate this case, the Average Reynolds Navier-Stokes (RANS) equation is used for a two-dimensional stationary flow using the k-ε model together with wall functions such as standard wall function, Enhanced and Menter-Lechner wall treatments. The moment ratio used is = 2 and the Reynolds number at
more » ... the inlet of the flow parallel to the channel is Re = 15,000. The results were compared with the literature data using Large Scale Simulation (LES). The results obtained for k-ε model Enhanced and Menter-Lechner wall treatment were satisfactory and close to that found by the LES simulation, however, results obtained from k-ε model standard wall function presented large deviation to literature, mainly in the boundary layer and K production profiles. In general, the results presented small distortions for the profiles of turbulent kinetic energy production near walls, however, they illustrate in an analogous manner to the literature the production of turbulent kinetic energy K concentrated in the shear layers between flows. The main results analyzed in this paper are the length of the recirculation bubble, boundary layer profile, mean velocity magnitude and kinetic energy production k.
doi:10.5281/zenodo.1187352 fatcat:5c5pxqvbl5espnu657nj52yzhq