A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is application/pdf
.
On finitely generated modules whose first nonzero Fitting ideals are regular
2018
unpublished
A finitely generated R-module is said to be a module of type (Fr) if its (r − 1)-th Fitting ideal is the zero ideal and its r-th Fitting ideal is a regular ideal. Let R be a commutative ring and N be a submodule of R n which is generated by columns of a matrix A = (aij) with aij ∈ R for all 1 ≤ i ≤ n, j ∈ Λ, where Λ is a (possibly infinite) index set. Let M = R n /N be a module of type (Fn−1) and T(M) be the submodule of M consisting of all elements of M that are annihilated by a regular
fatcat:6uddur6o5jd37j5hn7icp5j3im