Acoustic identification of a single transmission at 3115 km from a bottom-mounted source at Kauai

John L. Spiesberger
2004 Journal of the Acoustical Society of America  
Sounds received in the Gulf of Alaska at 3115 km from the ATOC/NPAL source at Kauai (75 Hz, 0.027-s resolution, bottom-mounted) are compared with acoustic and oceanographic models. Unlike data collected at stationary SOSUS arrays, these data come from a towed horizontal array at 372-m depth of military origin. A plausible identification of the acoustic reception is made despite the fact that only one transmission is collected and sound interacts with the bottom near the source. The similarity
more » ... tween the modeled and measured impulse response here may be useful for understanding the signals between this same source and the NPAL array near southern California. The plausible identification of sound from the horizontal array here appears to point toward the feasibility of using other military platforms of opportunity besides SOSUS to study acoustic propagation and possibly map climatic changes in temperature by means of tomography. Comments Sounds received in the Gulf of Alaska at 3115 km from the ATOC/NPAL source at Kauai ͑75 Hz, 0.027-s resolution, bottom-mounted͒ are compared with acoustic and oceanographic models. Unlike data collected at stationary SOSUS arrays, these data come from a towed horizontal array at 372-m depth of military origin. A plausible identification of the acoustic reception is made despite the fact that only one transmission is collected and sound interacts with the bottom near the source. The similarity between the modeled and measured impulse response here may be useful for understanding the signals between this same source and the NPAL array near southern California. The plausible identification of sound from the horizontal array here appears to point toward the feasibility of using other military platforms of opportunity besides SOSUS to study acoustic propagation and possibly map climatic changes in temperature by means of tomography.
doi:10.1121/1.1650014 fatcat:z2idwykm7vevnpm3j76bnjgdba