A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Bounded Fixed Point Iteration
1991
DAIMI Report Series
In the context of abstract interpretation for languages without higher-order features we study the number of times a functional need to be unfolded in order to give the least fixed point. For the cases of total or monotone functions we obtain an exponential bound and in the case of strict and additive (or distributive) functions we obtain a quadratic bound. These bounds are shown to be tight in that sufficiently long chains of functions can be shown to exist. Specializing the case of strict and
doi:10.7146/dpb.v20i359.6589
fatcat:x57djhswerdtph624e2ai3uipa