Deep neural network prediction for effective thermal conductivity and spreading thermal resistance for flat heat pipe

Myeongjin Kim, Joo Hyun Moon
2022 International journal of numerical methods for heat & fluid flow  
Purpose This study aims to introduce a deep neural network (DNN) to estimate the effective thermal conductivity of the flat heat pipe with spreading thermal resistance. Design/methodology/approach A total of 2,160 computational fluid dynamics simulation cases over up to 2,000 W/mK are conducted to regress big data and predict a wider range of effective thermal conductivity up to 10,000 W/mK. The deep neural networking is trained with reinforcement learning from 10–12 steps minimizing errors in
more » ... ach step. Another 8,640 CFD cases are used to validate. Findings Experimental, simulational and theoretical approaches are used to validate the DNN estimation for the same independent variables. The results from the two approaches show a good agreement with each other. In addition, the DNN method required less time when compared to the CFD. Originality/value The DNN method opens a new way to secure data while predicting in a wide range without experiments or simulations. If these technologies can be applied to thermal and materials engineering, they will be the key to solve thermal obstacles that many longing to overcome.
doi:10.1108/hff-10-2021-0685 fatcat:f4wbg57jcbca3fh2x6bgfekai4