A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Modeling Relevance Ranking under the Pre-training and Fine-tuning Paradigm
[article]
2021
arXiv
pre-print
Recently, pre-trained language models such as BERT have been applied to document ranking for information retrieval, which first pre-train a general language model on an unlabeled large corpus and then conduct ranking-specific fine-tuning on expert-labeled relevance datasets. Ideally, an IR system would model relevance from a user-system dualism: the user's view and the system's view. User's view judges the relevance based on the activities of "real users" while the system's view focuses on the
arXiv:2108.05652v1
fatcat:hiafpiym2jeqtdsanl52zfnrq4