FREE-FIELD REPRESENTATION OF GROUP ELEMENT FOR SIMPLE QUANTUM GROUPS

ALEXEI MOROZOV, LUC VINET
1998 International Journal of Modern Physics A  
A representation of the group element (also known as "universal ${\cal T}$-matrix") which satisfies $\Delta(g) = g\otimes g$, is given in the form $$ g = \left(\prod_{s=1}^{d_B}\phantom.^>\ {\cal E}_{1/q_{i(s)}}(\chi^{(s)}T_{-i(s)})\right) q^{2\vec\phi\vec H} \left(\prod_{s=1}^{d_B}\phantom.^<\ {\cal E}_{q_{i(s)}}(\psi^{(s)} T_{+i(s)})\right)$$ where $d_B = \frac{1}{2}(d_G - r_G)$, $q_i = q^{|| \vec\alpha_i||^2/2}$ and $H_i = 2\vec H\vec\alpha_i/||\vec\alpha_i||^2$ and $T_{\pm i}$ are the
more » ... m i}$ are the generators of quantum group associated respectively with Cartan algebra and the {\it simple} roots. The "free fields" $\chi,\ \vec\phi,\ \psi$ form a Heisenberg-like algebra: $\psi^{(s)}\psi^{(s')} = q^{-\vec\alpha_{i(s)} \vec\alpha_{i(s')}} \psi^{(s')}\psi^{(s)}, & \chi^{(s)}\chi^{(s')} = q^{-\vec\alpha_{i(s)}\vec\alpha_{i(s')}} \chi^{(s')}\chi^{(s)}& {\rm for} \ s 0}^{d_B}{\cal E}_{q_{\vec\alpha}}\left(-(q_{\vec\alpha}- q_{\vec\alpha}^{-1})T_{\vec\alpha}\otimes T_{-\vec\alpha}\right).$$
doi:10.1142/s0217751x9800072x fatcat:jhjct72ai5gy5g6etpqrhhckfu