Fairness guaranteed novel eICIC technology for capacity enhancement in multi-tier heterogeneous cellular networks

Qixun Zhang, Tuo Yang, Yue Zhang, Zhiyong Feng
2015 EURASIP Journal on Wireless Communications and Networking  
Driven by surging demands for high data rate services and better user experiences, there is an increasing capacity demand in heterogeneous cellular networks. As one of the promising solutions for capacity enhancement, densely deployed small cells are proposed to provide a huge capacity gain and improve the user experience with high data rate services. However, the inter-cell interference among densely deployed cells is a big challenge that constraints the performance of capacity improvements in
more » ... hierarchical multi-tier heterogeneous cellular networks. To minimize the inter-cell interference and achieve a fairness guaranteed solution among different users, a novel enhanced inter-cell interference coordination (eICIC) technology is proposed by jointly considering about the cell range expansion (CRE) scheme to minimize interferences among multi-tier cellular networks, improving the network throughput and quality of service (QoS). Optimal CRE bias and almost blank subframe (ABS) ratio solutions are achieved in this paper by considering the fairness among users at the center and cell edge. Moreover, the multi-objective decision-making problem is solved by maximizing the proportional fairness (PF) utility and area capacity in multi-tier heterogeneous cellular networks. Simulation results denote that a tradeoff between fairness and network throughput is achieved when CRE bias is from 8 to 12 dB and ABS ratio is from 4/8 to 6/8.
doi:10.1186/s13638-015-0300-y fatcat:cjkypyup7fezpkwezsmwptnqie