
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 2, MARCH 1996 429 

Iterative Decoding of Binary 
Block and Convolutional Codes 

Joachim Hagenauer, Fellow, ZEEE, Elke Offer, and Lutz Papke 

Abstract- Iterative decoding of two-dimensional systematic 
convolutional codes has  been  termed “turbo” (de)coding. Using 
log-likelihood algebra, we show that any  decoder  can he  used 
which accepts soft inputs-including a  priori values-and delivers 
soft outputs that can  he  split into three terms: the soft channel  and  
a  priori inputs, and  the extrinsic value. The  extrinsic value is used  
as  an  a  priori value for the next iteration. Decoding algorithms in 
the log-likelihood domain are given not only for convolutional 
codes hut also for any  linear binary systematic block code.  
The  iteration is controlled by  a  stop criterion der ived from 
cross entropy, which results in a  minimal number  of iterations. 
Optimal and  suboptimal decoders  with reduced complexity are 
presented. Simulation results show that very simple component  
codes are sufficient, block codes are appropriate for high rates 
and  convolutional codes for lower rates less than 213  . Any 
combinat ion of block and  convolutional component  codes is 
possible. Several interleaving techniques are described. At a  bit 
error rate (BER) of lo-* the performance is slightly above  or 
a round the bounds  given by  the cutoff rate for reasonably simple 
block/convolutional component  codes,  interleaver sizes less than 
1000 and  for three to six iterations. 

Index Terms- Concatenated codes,  product codes,  iterative 
decoding, “soft-inlsoft-out” decoder,  “turbo” (de)coding. 

I. INTRODUCTION 

S INCE the early days of information and coding theory the 
goal has always been to come close to the Shannon limit 

performance with a tolerable complexity. The results achieved 
so far show that it is relatively easy to operate at signal- 
to-noise ratios of &/No above the value determined by the 
channel cutoff rate. For a rate l/2 code and soft decisions on 
a binary input additive white Gaussian noise (AWGN) channel 
the cutoff rate bound is at 2.5 dB, as opposed to the capacity 
limit which for rate l/2 is at 0.2 dB. It is generally held that 
between those two values of &/No the task becomes very 
complex. Previously known methods of breaking this barrier 
were a) sequential decoding with the drawback of time and/or 
storage overflow and b) concatenated coding using Viterbi and 
ReedSolomon decoders which achieve 1.6 dB at the cost of 
a  large interleaver and feedback between two decoders [ 11. 

Recently, interest has focused on iterative decoding of prod- 
uct or concatenated codes using “soft-in/soft-out” decoders 
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with fairly simple component codes in an interleaved scheme. 
The basic idea is to break up decoding of a  fairly complex 
and long code into steps while the transfer of probabilities 
or “soft” information between the decoding steps guarantees 
almost no loss of information. A flavor of the idea can be 
found in the work of Battail, e.g., [2]-[4]. Iterative decoding 
schemes with “soft-in/soft-out” decoders were proposed in 
[5]-[7]. In [6] an Eb/No of 1.3 dB was achieved for the above 
mentioned channel with a three-dimensional code of moderate 
complexity. Impressive simulation results were presented in 
[8] achieving an E,,/No of 0.7 dB, although with a huge 
interleaver of 64 500 bits, 18 iterations, and some ad  hoc  “fine- 
tuning” factors in the Bahl algorithm [9]. The novelty in [8] 
was the use of systematic feedback convolutional codes in the 
iterative scheme and the introduction of a  “pseudo’‘-random 
interleaver (scrambler) between the two encoders. In the paper 
[IO] some information-theory-based interpretation of iterative 
decoding is given. 

The intention of this paper is to present the method of 
iterative decoding in a unified framework. We  shall present 
several “soft-in/soft-out” algorithms which have the desired 
property that extrinsic information is used as a  priori in- 
formation in the next iteration step. We  will show that any 
linear binary code in systematic form can be used as the 
component code and that “soft-in/soft-out” algorithms exist 
for these codes. The problem is the complexity; therefore, 
low-complexity algorithms such as the modified soft-output 
Viterbi algorithm (SOVA) will be presented [ll], [12]. Cross- 
entropy introduced in [ 131 and [ 141 for iterative decoding 
will provide a useful criterion for stopping the iterations. 
Unfortunately, satisfying analytic results are not yet available. 
We  shall present simulation results for convolutional and block 
codes. 

II. TOOLS FOR ITERATIVE DECODING OF BINARY CODES 

A. Log-Likel ihood Algebra ’ 

Let U be in GF (2) with the elements {+l, -l}, where +l 
is the “null” element under the 8 addition. The log-likelihood 
ratio of a  binary random variable U, Lu(u), is defined as 

L/y(u) = log Pu(u = +1) 
Pu(u = -1) 

Here Pu(u) denotes the probability that the random variable 
U takes on the value u. The log-likelihood ratio Lu(u) will 
be denoted as the “soft” value, or the L-value of the random 
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variable U. The sign of Lu(u) is the hard decision and the 
magnitude ILu(u)I is the reliability of this decision. Unless 
stated otherwise, the logarithm is the natural logarithm. 

If the binary random variable U is conditioned on a different 
random variable or vector Y, then we have a conditioned 
log-likelihood ratio Lu~y(uIy) with 

LUIY(UIY) = 1% h(u = +llY) 
eY(u = -1lY) 
Piy(u = +1) PYldYlU = fl) 

= log Pu(u = -1) + logpy,u(ylu = -1) 

= Lu(u) +  LYIU(YlU). (2) 

is true. Using the relation tanh(u/2) = (e” - l)/(e” + 1)we 
obtain [3] 

.I 1 + fi tanh(L(uj)/2) 
g  L(Uj) =  log j=J1 
j=l 1 - n  tanh (L(uj)/2) 

j=l 

= 2artanh (i tanh(L(,r,)/2)) (11) 

and finally approximate it as in (6) by 

When there is no danger of confusion, we will henceforth skip 
the indices for the probabilities and the log-likelihood ratios. 

& L(Uj) =  L  5  uj 

Notice that the joint log-likelihood L(u, y) is equal to the 
j=l ( 1 

j=l 

conditioned log-likelihood L(uly) since the probability P(y) 
term can be canceled out. Using the relations = (fi sign (LC~jli) . jzinJ ILC~jIl. (12) 

P(u1 $  u4? = +1) = P( Ul = +1). P(u3 = fl) 
+ (1 - P(Ui = +1)) . (1 - P(u2 = fl)) 

with 

The reliability of the sum W  is therefore determined by 
(3) the smallest reliability of the terms. From (11) we get the 

symmetrical relation 

eLCu) 
P(u = +1) = l + eL(u) (4) = fi tanh(L(uj)/2) (13) 

j=l 

it is easy to prove for statistically independent random vari- to be used in the Appendix. 
ables lJ1 and lJ2 

1 + euw)eL(w) 
LCUl @U2) =l"g eL(ul)+ eL(u2) 

z sign (L(ul)) . sign (L(u2)) 

. m inW w )l, IL(u2)l). 

B. Soft Channel  Outputs 

(5) Now, we will define more clearly what is meant by the 
“soft values” of a  channel. If we encode the binary value u 

(6) 
having a soft value L(u) then we create coded bits z with soft 
values L(z). For an (N, &)-systematic code, K of the bits z 

From now on we will use a special algebra for the log- are equal to the information bits u. After transmission over a 

likelihood ratio values L(u): We use the symbol EE as the binary symmetric channel (BSC) or a Gaussian/fading channel 
we can calculate the log-likelihood ratio of z conditioned on notation for the addition denned by 

A 
(7) 

the matched filter output y 

L(w) H  L(u2) = JqUl @  u2) 

with the additional rules 

L(u) •l 03  = L(u) L(u) H -KJ = -L(u) 

and 

L(u) H 0  = 0. 

L(xly) =  log p(x =  +lly) 
P(x = -1ly) 

( 
P(YlZ = +1) 

= log p(yls = -1) 

By induction one can further prove that 

&L(&L $Uj 
j=l 

( ) 
j=l 

fi (eL@J) + 1) + h (eL(“j) - 1) 
= log+J1 j=l 

n (eLcv2) + 1) - fi (eL(v,) - 1) 
j=l j=l 

(8) 

P(x = +1) 

> P(x = -1) (14) 

W ith our notation we obtain 

(9) L(4Y) = 1% 
exp(-%(y - u)“) P(x = +1). 
exp (-%(Y + aI21 + log p(x = -1) 

= L, . y  +  L(sj (15) 

with L, = 4a . Es/No. For a fading channel, a  denotes the 
fading amplitude whereas for a  Gaussian channel we set a = 1. 
For a BSC, L, is the log-likelihood ratio of the crossover 
probabilities Pa, where L, =  log (( 1  - Po)/Po). L, is called 
the reliability value of the channel. 

(10) 
We  further note that for statistically independent transmis- 

sion, as in dual diversity or with a repetition code 

L(4Yl,YZ) = L,,yyl + L,,y2 + L(x). (16) 
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Fig. 1. Iterative decoding scheme for two-dimensional codes. 

For the rest of the paper we assume a channel with constant 
reliability denoted by L,. In the general case (fading, etc.) L, 
is time-variant and would have the same additional index as y. 

C. Principle of Iterative Decoding Algorithms 

We show the principle of iterative decoding in the two- 
dimensional case [5], [8]. The K1 . K2 information bits u are 
ordered in a rectangular matrix as shown in Fig. 1. Attached 
to it are the parity bits p- and pl of the two systematic codes 
C- and Cl. The received values at the matched filter output 
are denoted by y and L, . y which are available to the decoder 
for all coded bits. 

We  will first use a simple example to demonstrate the main 
ideas. Then we will proceed with the general case for block 
codes and for convolutional codes and conclude with some 
generalizations. 

I) Tutorial Example with the (3,2,2) Single Parity Check 
Code  as Component  Code:  Let us encode four information 
bits by two (3,2,2) single parity check codes with elements 
{fl, -1) in GF(2) as shown in Fig. 2(b) and let us assume 
we have received the values L, . y  shown in Fig. 2(c). No a 
priori information is yet available. Let us start with horizontal 
decoding: The information for bit ~11 is received twice: 
Directly via ull and indirectly via ~12 @  ~1. Since ~12 and 
pr are transmitted statistically independent we have for their 
L-value 

L(u12 $  p;) =  L(u12) H L(p,) =  1.5 H 1.0 Z  1.0. 

This indirect information about ~11 is called the extrinsic 
value and is stored in Fig. 2(d). For ~12 we obtain by the 
same argument a horizontal extrinsic value of 0.5 H 1.0 M  0.5 
and so on for the second row. When the horizontal extrinsic 
table is filled we start vertical decoding using these L; as 
a  priori values for vertical decoding. This means that after 

(a) 

Received values L; y 

Cc) 

+2.0 +o.s q +1.5 -2.0 

Coded values 

(b) 

+l.O +0.5 q -1.0 -1.5 

Extrinsic information L- after 
first horizontal decodint 

Cd) 

Extrinsic information L’ after 
first vertical decoding e 

Soft output after the 
first horizontal and 
vertical decoding 

(e) 0-J 
Fig. 2. Example for iterative decoding of a rate-l/2 code using two rate-2/3 
single parity check codes. 

vertical decoding of ~11 we have the following three L-values 
available for ~11: 

l the received direct value f0.5, 
l the a  priori value L; from horizontal decoding +l.O and 
l the vertical extrinsic value Lk using all the available 

information on ~21 @pi, namely, (4.0 + (-1.0)) q  2.0 M  
2.0. 

The vertical extrinsic value is stored in the table of Fig. 2(e). 
For uzl it amounts to (0.5 + 1.0) EB 2.0 M  1.5, for ~12 to 
(1.0 + (-1.5)) q  (-2.5) M  0.5, and for ~22 to (1.5 + 0.5) •] 
(-2.5) M  -2.0. If we were to stop the iterations here we 
would obtain as soft output after the vertical iteration 

L(B) =  L, . y  +  L, +  Lk  (17) 

shown in Fig. 2(f). The addition in (17) is justified from (16) 
because up to now the three terms in (17) are statistically 
independent. We  could now continue with another round 
of horizontal decoding using the respective Lk as a  priori 
information. However, now we encounter statistical depen- 
dencies. Anyway, in our example we have already correctly 
decoded with good reliabilities IL(G) I. The desired statistical 
independence is one of the reasons why we are not using a full 
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input log-likelihoods output log-likelihoods 

:1 
: : 0 priori values for 

all information bits L(uj I \ c  ‘Soft-In 
/: / ’ 

’ ’ 
extrinsic values for 

b all information bits 

/ ’ / ’ 
1 $$I 

1 ’ Soft-Out’ / / 
channel values for Decoder 
all code bits 

i Ip 

L, Y ‘;: 

\ I c  aposteriori values for 
I ’ 
:/’ u3 

all information bits 

Fig. 3. “Soft-in/soft-out” decoder 

product code. Note that we are determining extrinsic values to 
be used as a priori values only for information bits and not 
for parity bits, because codeword probabilities are determined 
from a priori probabilities of information bits only. This will 
become clear in Section III-C. 

2) General Setup with Block Codes as Component Codes: 
We can use any combination of systematic block codes for 
encoding the K1 . K2 information bits in the horizontal or 
vertical direction. One example might be 

Horizontally: K2 code words of a (Kl, Nl) block code 
C- with rate RI = Kl/Nl . 

Vertically: K1 code words of a (Kz, N2) block code 
Cl with rate R2 = Kz/Nz . 

If we mean either the vertical or the horizontal code, we 
drop the indices 1 and 2. The total rate of the two-dimensional 
code will be 

R= 
1 1 

I+ (Nz-Kz)KI + (N~--K~)K~ = &+&-1’ 
(18) 

KIKZ KIKZ 

Each row or column of the information matrix forms an 
information sequence u to be encoded into a codeword 

where x E C- or x E Cl, respectively. 
In the remainder of this section we shall omit the indices 

in u and y for the sake of brevity. Assume we have a “soft- 
in/soft-out” decoder available as shown in Fig. 3 for decoding 
the component codes. The output of the “symbol-by-symbol”’ 
maximum a posteriori (MAP) decoder is defined as the a 
posteriori log-likelihood ratio for a transmitted “$1” and a 
transmitted “ -1” in the information sequence 

L(C) b L(uly) = log P(u = +1ly) 
P(u = -1ly)’ (19) 

Such a decoder uses a priori values L(U) for all information 
bits U, if available, and channel values L, . y for all coded 
bits. It also delivers soft outputs L(C) on all information bits 
and an extrinsic information L,(C) which contains the soft 
output information from all the other coded bits in the code 
sequence and is not influenced by the L(u) and L, . y values 
of the current bit. For systematic codes, the soft output for the 
information bit u will be represented in Section III in three 
additive terms 

L(C) = L, . y  + L(u) + Le(ii). (20) 

This means we have three independent estimates for the log- 
likelihood ratio of the information bits: The channel values 
L, . y, the a priori values L(u) and the values L,(C) by 
a third independent estimator utilizing the code constraint. 
Assume equally likely information bits: Then we do not have 
any a priori information available for the first iteration, thus 
we initialize L(u) = 0. Decoding of the horizontal code C- 
starts using the corresponding L, . y for the information part 
and for the horizontal parity part. The extrinsic information 
L;(C) of the horizontal code C- on the information bit u is 
from (20) 

L,(Q)=L-(ii-LL,.y. (21) 

This independent estimate on u is now used as the a priori 
value for decoding code C’ vertically to obtain 

Lk(ii)=LI@-(L,.y+L,@)). (22) 

This vertical extrinsic information will be used as new a priori 
value in the subsequent decoding of code C- in the next itera- 
tion step. Note that for the first horizontal and the first vertical 
iteration the L-values are statistically independent, but since 
later on they will use the same information indirectly, they will 
become more and more correlated and finally the improvement 
through the iterations will be marginal. Of course, for the final 
decision (or soft output) after the last vertical iteration we 
combine the last two extrinsic pieces of information with the 
received values to obtain 

L(C) = L, . y  + L,(C) + L$) (23) 

which, using (22), is identical to LI (6). The whole procedure 
is shown in Fig. 4. 

.3) General Setup with Convolutional Codes as Component 
Codei: Convolutional codes are used with a systematic feed- 
back realization of the encoder. If the generator matrix of a 
rate l/n encoder is 

G(D) = (go(D) a(D). . .a-l(D)) 

the feedback encoder will be 

Gsys(  D) = 1 $$ . . . ‘;;;$) . (24) 

We will later use the generator polynomials go(D) = 1 + 
D + D2, gl(D) = 1 + D2, and go(D) = 1 + D3 + D4, 
g1 (D) = 1+ D + D2 + D4 for the rate-l/2 convolutional code 
with memory m = 2 and memory m = 4, respectively. Fig. 5 
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I feedback for the next iteration 
I 

L; 6) 
b 

‘Soft-In/Soft-Out’ ‘Soft-In/Soft-Out’ I 
I Decoder for the Decoder for the I 

vertical Co&C 1 d(e) i Ufi) 
i atthe 
1 final 
; iteration 

I I 
_-___-___-_-___-_-_-____________________------------------------~ 

Fig. 4. Iterative decoding procedure with two “soft-in/soft-out” decoders with initial L(U) = 0, i.e., equally likely source (information) bits. 

X =u 
k,l k  

Fig. 5. Realization of the systematic convolutional encoder with feedback 
for the rate-l/2 code with memory 2. The generator polynomials are 
go(D) = 1+ D + D2 and gl(D) =  1+ 0’ 

shows a realization of the convolutional encoder with feedback 
for the 4-state code. The parity check bits are punctured to 
achieve the desired higher rate i/G. Now we use as component 
codes 

Horizontally: A code sequence of a  convolutional code of 
rate RI = &/Gl. This code is punctured from 
a rate l/n1 mother code which has memory 
m l and a binary trellis with 2”1 states. We  
assume that K1 and Nl are multiples of ,& 
and fil. 

Vertically: A code sequence of a  convolutional code of 
rate R2 = i2/fi2, punctured from a rate l/n2 
mother code with 2”2 states. Again K2 and 
N2 are chosen as multiples of ,& and G2. 

Using a convolutional code, the K1 . K2 information bits u 
are first encoded into the systematic code sequence 

x= (Xl,... ,xk,‘..,xK1.Kz) 

with 

xk =  (xk,l, zk,Z!, . ” , Zk,n) Z- =  (Uk,pk,l, ... ,Pk,n-l)T (25) 

where x E C- or x E Cl, respectively. Some of the parity bits 

xk,v =  pk,v-1, l<k<Kl.K2, 2ju<n 

in the code sequence might be punctured according to the 
puncturing rule. If the information bit ?& is transmitted, 
1  I k 5 KI. K2, we receive the value Lc.Yk,l. The respective 
values for the nonpunctured parities are xk,, and Lc.g+. Note 

that we use k as a running index either for the information bits, 
the coded bits, or the channel values. 

The problem of the termination of the convolutional code 
can be solved by terminating code C- by ml known bits and 
leaving code Cl open [15]. 

4) Generalizations: Several generalizations of the decoding 
schemes in Sections II-C2 and II-C3 are possible. 

4 
b) 

cl 

4  

e> 

Combinations of block and convolutional codes. 
The extension to more than two dimensions is obvious 
and has been investigated in [5] and [6]. 
Although “soft-in/soft-out” decoding is in principle also 
possible with codes in nonsystematic form, we only will 
use codes with systematic encoders for the following 
reasons: 

l Codes in their systematic and nonsystematic form 
give equivalent codes. 

l It is well known that systematic convolutional feed- 
forward encoders produce less powerful codes and 
therefore they are not considered here. Convolutional 
codes in their systematic feedback form are equiva- 
lent to the nonsystematic form in distance and nearest 
neighbor path properties. However, the BER at low 
signal-to-noise ratio (SNR) is slightly better. 

l A nonsystematic two-dimensional implementation 
would force us to transmit the encoded informa- 
tion part twice,’ reducing the overall code rate 
dramatically. 

In the rare cases where we have outside information that 
the source (information) bits are not equally likely, we 
have to add this source a  priori information L,(u) to all 
the a  priori values in the iterations. 
The interleaver need not be in vertical and horizontal 
block form. Any “pseudo’‘-random permutation of the 
information bits for the second encoding is possible and 
might result in a better BER [8], [16], and [17]. 

D. Convergence Properties of Iterative 
Decoding via Cross-Entropy 

Battail [ 131 and Moher [ 141 have shown that cross-entropy 
is a useful criterion for iterative decoding. We  will show how 
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cross-entropy transforms into our notation and that it is a  useful Further, if the reliabilities are large enough, we have with 
stop criterion for an iterative algorithm. log(l + X) = Z  

Let the soft output have the structure as described in Section 
II-C, (23). We  then have two a  posteriori distributions of 
subsequent decoding operations. The cross-entropy of two 
distributions P(G) and Q(G) is defined as 

Ep{ log a} z exp (-IL$‘(&)l) 

. (1 - exp (-Gf’AL;‘“‘(&)) 

+{1og$#} (26) 

and is a measure of the difference (“closeness”) of two 
distributions. Here Ep denotes the expectation operator over 
the distribution P(G). Assuming statistical independence, we 
obtain 

(27) 

Now, let us look at two subsequent iterations (i - 1) and (i), 
where one iteration consists of the decoding in the “horizontal” 
and the “vertical” direction. We  define 

Ll;)(Q = L, . yk +  L, (t-1)(iiLlc) +  Lk’% ‘(&) (28) 

L$)(Qli) =  L, . yk +  LCi’ (?I&) +  L,(l) (&) (29) 

and therefore the difference in the soft outputs equals 

(i) (i) n  t 
L, (&) - LQ  (z&) =  L,’ I(&) - L, (a-1) (&k) 

= AL, (%I (&). (30) 

. (1+ Gf)AL;‘i’(iib))). (32) 

As long as AL;“’ has the same sign as 6:) and a magnitude 
smaller than 1, we take the first two terms of the series 
expansion of exp (x) and further obtain 

Of course, the assumption of statistical independence between 
likelihood values is not exactly true after some iterations. 
Nevertheless, we could use the criterion 

T(i) = c 
jAL,“)(i&)l 

(4 ^ < threshold (34) 
k exp(iL~ (Uk)i) 

as a stop criterion for the iterations. Simulation results have 
shown that T(i) drops by a factor of lo-’ to lop4 once 
no more errors will be corrected and a threshold value of 
T( 1) . lop3 is appropriate to stop the iterations. The benefit of 
this stop criterion will be shown in Section IV-A in Table II. 

Using the inverse of (1) III. OPTIMAL AND SUBOPTIMAL ALGORITHMS 

and 

A. “Symbol-by-Symbol” Maximum A Posteriori Probability 
(MAP) Decoding Rule for Systematic Convolutional 
Codes  in Feedback  Form with a  Binary Trellis 

it is straightforward to show that 

= -AL,‘i’ ’ 
1  + exp  (L$‘(&)) 

+ log 
1  + exp  (-L$)(iik)) 

1 + exp (-L$?(iik)) 

z -@AL;(‘) (ck) 1 

1 +  exp (IL$?(&k)l) 

+  log 1  +  exp (-IL$‘@k)l) 

1  +  exp (-ILg)(iik)l) ’ 
(31) 

The last approximation is valid, when the decisions do not 

The MAP algorithm for trellis codes was proposed simul- 
taneously by Bahl, Cock& Jelinek, and Raviv in [ 181 (and 
later in [9]) and by McAdam, Welch, and Weber in [19]. 
In [8] the algorithm was adapted to systematic convolutional 
codes. Here we will show how the MAP decoder uses log- 
likelihood values and that its output has the general structure 
given in (20). In [16] and [20] the structure of such decoders 
was illuminated and simulation results for the Bahl algorithm 
including optimized interleavers were presented. 

The trellis of a  binary feedback convolutional encoder has 
the structure shown in Fig. 6. Let Sk be the encoder state at 
time /G The bit uk is associated with the transition from time 
Ic - 1  to time Ic. The trellis states at level k - 1  and at level 
k are indexed by the integer s’ and s, respectively,The goal 
of the MAP algorithm is to provide us with 

L(ck) =  log p(uk = +llY) 
p(uk =  -II!/) 

uk=-l 

change anymore, i.e., when 

(9 (;I n  -(i) sign (Lp (&)) = sign (Lo (‘&)) = Uk . 

The index pair s’ and s determines the information bit uk and 
the coded bits x+, for v = 2, . , n. The sum of the joint 
probabilities ~(s’, s, y) in the numerator or in the denominator 
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of (35) is taken over all existing transitions from state s’ to 
state s labeled with the information bit uk = fl or with 
Uk = -1, respectively. Assuming a memoryless transmission 
channel, the joint probability p(s’, s, y) can be written as the 
product of three independent probabilities [9] 

ds’, s, !/) = P(s’, ?/j<k) . ds, !/kb’) . d!&i>k b) 

= ds’&j<k) +(+‘) ‘P(!/kb’, s, ?(?/j>klS) 
--- 

= ak--1(S’) . ‘-Yk(S’, S) . Pk(S). (36) 

Here yj<k denotes the sequence of received symbols yj from 
the beginning of the trellis up to time Ic - 1 and yj>k is the 
corresponding sequence from time Ic + 1 up to the end of the 
trellis. The forward recursion of the MAP algorithm yields 

ak(S) = c?‘k(S’> S) . ak-I@‘). 
s’ 

(37) 

The backward recursion yields 

pk-l(S’) = c yk(S’, S) ’ @k(S). (38) 
s 

In order to perform the optimum “symbol-by-symbol” MAP 
rule, the trellis has to be of finite duration. We assume that at 
the start and at the end of the observed sequence all paths 
merge at the zero state. Then the forward and backward 
recursion are initialized with astart = 1 and Pend(0) = 1. 
Whenever a transition between s’ and s exists the branch 
transition probabilities are given by 

‘-Yk(S’,S) = P(!/kbk) ’ p(uk). (39) 

Using the log-likelihoods, the a priori probability P(uk) can 
be expressed as 

P(uk = fl) = 

= Al, . eL(dQ/2 (40) 

and, in a similar way, the conditioned probability p(yl, ]uk) for 
systematic convolutional codes can be written as 

n 

dhk) = Bk . exP +c?lk;luk + ; c Lcyk,dk,v . 
v=2 

(41) 

Keep in mind that some of the coded bits might be punctured 
before transmission, in which case the sum in (41) is only over 
those indices v corresponding to nonpunctured coded bits. The 
terms Ak and Bk in (40) and (41) are equal for all transitions 
from level k - 1 to level Ic and hence will cancel out in the 
ratio of (35). Therefore, the branch transition operation to be 
used in (37) and (38) reduces to the expression 

~uk(Ldk,l + L(Uk)) (42) 

with 

yp)(s’, s) = exp 

State index s’ State index s 

States St., States Sk 
with forward with backward 
probabilities akm, (s’) probabilities p, (s) 

-1 

jxqTzxT 

At the transistions the labels are x = u , x x 
k.1 k k.2’ “’ ’ k,n 

Fig. 6. Trellis structure of systematic convolutional codes with feedback 
encoders. 

Since the first exponential function in (42) is common in all 
terms in the sums of (35), we divide all terms by those and 
obtain 

L(ak) = h/k,1 + L(uk) 

c -$)(s',s) ' Qk-l(S') '@k(S) 
(s'.s) 

+log ;;$;j1 yf)(d,s) '&!&l(d) $k(s)' (44) 

uIc=-l 

Thus we have shown that the MAP algorithm for systematic 
codes has the structure of (20). We can avoid calculating 
actual probabilities by using the logarithm of probabilities and 
the approximation log (eL1 + eLz) M max(L1, Lz). Then this 
algorithmworkswithlogolk(s),logPk-r(s’), andlogyk(s’,s) 
and the summations in .(37), (38), and (44) are replaced 
by the corresponding maximizations. For the remainder of 
the paper we will refer to this suboptimal realization of 
the “symbol-by-symbol” MAP rule as the Log-MAP rule 
realization. Investigations have shown that the performance 
of the Log-MAP algorithm is close to the optimal “symbol- 
by-symbol” MAP algorithm, in particular when the above 
approximation is improved by adding a correction term to 
max (Ll, L2) having eight possible values [21]. 

B. The “Soft-In/Soft-Out” Viterbi Algorithm 
(SOVA) for Systematic Convolutional Codes in 
Feedback Form with a Binary Trellis 

The Viterbi algorithm (VA) in its MAP form is described in 
[22]. It searches for the ith-state sequence S(i) and thus the 
desired information sequence ~(‘1 by maximizing over i the 
a posteriori probability 

Wq/) = PCYIS 2 I&. 
(‘) P(5+) 

(45) 

Since y is fixed we can equivalently maximize 

p(yppp). (46) 

This maximization is realized in the code trellis, when for each 
state s and each time !c, the path with the largest probability 
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/. 
I 

time index j ~ j<k I J=k / k<j<k+l 
relative time index 1 1=0 

Fig. 7. Example for the derivation of AL 

p(SF&, yj51i) is selected. Th’ is probability can be calculated 
by multiplying the branch transition probabilities associated to 
path i. They are T~(s’(~), s (i)) for 1 < j 5 Ic and defined in 
(39). The maximum is not changed ifwe take the logarithm, 
and hence we perform the same metric computation as de- 
scribed for the forward recursion of the Log-MAP algorithm 
in Section III-A. The values log AI, and log BI, from (40) and 
(41) are additive and the same for all paths i and therefore 
are irrelevant for the maximization. As already mentioned 
above, we assume hereby a memoryless transmission channel 
and statistical independence of the relevant u within the 
observation window of the VA. For the metric of the ith path 
at time k we obtain 

Here s ci) denotes the state of the path i at time IG, uii) is the 
(i) information bit, and x~,~ are the coded bits of path i at time 

Ic. For systematic codes we further have 

Again the sum is over the indices v with nonpunctured coded 
bits. A different derivation of the path metric (47) can be 
found in [12]. 

P (correct) = P (path, Yjsk+l) 

~(pathG,yjlk+J +P(path$,yj<k+J 

This slight modification of the metric of the VA in (47) and 
in (48) incorporates the a priori information about the proba- 
bility of the information bits. Forney [22] already mentioned 
the possibility of using a priori values in his paper, but did 
not give any use or application for it. If the channel is very 
good, 1 L, . yyI will be larger than 1 L(U) 1, and decoding relies on 
the received channel values. If the channel is bad, as during a 
deep fade, decoding relies on the a priori information L(u). In 
iterative decoding this is the extrinsic value from the previous 
decoding step. 

exp (Uk+l(~(~“))) = 
exp (A&+l(s(;l))) + exp (AJk+l(s(ii))) 

exp (A”,) 
= 1 + exp (A;) ’ (51) 

Therefore, the likelihood ratio or “soft value” of this binary 
path decision is AL, because 

1% 
P (correct) _ Al 

1 - P (correct) - Ic’ (52) 

Note that at time Ic, the joint probability of the path i and of Furthermore, it was shown in [12] that the soft output of the 
the received sequence yjlk and the metric in (48) are related VA is the decision & times the L-value of the errors and can 

k+l; 
1 

k+ d * 
l=S 

by 
k 

&+X&t/Z i, yj<k) = p(+&, yj<k) = ( ) n Aj Bj .f?@Z)). 
j=l 

(49) 
The terms A? and Bj correspond to those in (40) and (41) and 
their product in (49) is the same for all paths at time Ic. 

The soft output Viterbi algorithm (SOVA) can be imple- 
mented in the register exchange mode [23] or in the trace 
back mode. It will now be described for the latter mode using 
the log-likelihood algebra. 

As shown in Fig. 7, we wish to obtain the soft output for bit 
rY&, which the VA decides after a delay 6. The VA proceeds in 
the usual way by calculating the metrics for the ith path using 
(48). For each state it selects the path with the larger metric 
Mk (~(~1). At time k + 6 the VA has selected the maximum- 
likelihood (ML’) path with index i6 and has discarded the other 
path with index ii ending at this state. Along the ML path is, 
which decides the bit 6k, 6 + 1 nonsurviving paths ii with 
indices I = 0, . . , 6 have been discarded. Define the metric 
difference as 

A: = hfk+&(ii)) - h&+&&)) 2 0. (50) 

Then the probability P (correct) that the path decision of the 
survivor was correct at time k + 1 given yjlk+l, is from (49) 
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finally be approximated by 

L(‘iik) M iik -j$ Aq, M & . min A;. 
LO,...,6 l=O 

The sum and the minimum is only over those nonsurviving 
paths which would have led to a different decision Gk. Thus 
we have the same hard decisions as the classical VA, and the 
reliability of the decisions is obtained by taking the minimum 
of the relevant metric differences along the ML path. 

For’ a systematic convolutional code it can be seen from 
Fig. 7, using (48) and (50), that each of the AL has the 
following structure: 

Therefore, the minimum value in (53) has the same structure. 
Thus the SOVA output in its approximate version in (53) has 
the format 

Lso\TA(&) = LL,yk,l + L(u,+) + &k . (first 3 terms in (47)) 
\ / 

-L(h) 
(55) 

and preserves the desired additive structure of (20). Conse- 
quently, we subtract the input values from the soft output of 
the SOVA and obtain the extrinsic information to be used in 
the metrics of the succeeding decoder (see Fig. 4). In this 
case, the extrinsic term in (55) is weakly correlated to the 
other two terms. Furthermore, it has been shown that for 
small memories the SOVA is roughly half as complex as the 
Log-MAP algorithm [21]. 

C. MAP Decoding Rule for Linear Binary Block Codes 

The results of Sections III-A and III-B can be applied to 
any code for which a trellis, especially a binary trellis, can be 
drawn. It is well known that the codewords of a linear binary 
(N, K) block code C can be represented as paths through a 
trellis of depth N with at most 2N-K states [2], [9], [24]. 
For the construction of the trellis, the systematic H-matrix of 
the code is. used and this results in a trellis with an irregular 
structure as opposed to the regular trellis of the convolutional 
codes. Each transition between two states is labeled with the 
appropriate codeword symbol Zk, where the first K symbols 
are equal to the information bit uk and the following N - K 
symbols represent parity bits. Hence two paths leave each 
existing state during the information part, whereas in the parity 
part only one path leaves each present state. (For convolutional 
codes this is the case in the last m time instants of a terminated 
trellis.) The branch transition probability in (36) for systematic 
block codes with statistically independent information bits can 
therefore be written as 

‘-fk(S’, s) = p(+‘) ?‘(Ykls’, s) = &‘(zk; Yk) (56) 

with P(B~;?J~) defined as 

Note that the branch transition probability is only defined when 
there is a transition from state s’ at time k - 1 to state s at time 
/?. The probability of P( uk ) . 1s calculated according to (40). For 
the calculation of the conditioned probability p(& ]zk) we use 
a similar formula as in (41) but without the summation term. 
Furthermore, we obtain for the log-likelihood ratio associated 
with definition (57) 

L(Xk; yk) = log (p(Xk = +I; yk)/P(xk = -1;Yk)) 

l<k<K 
K+l<k<N. (58) 

Omitting the terms which are equal for all transitions from 
time Ic - 1 to time Ic and using the preceding definition of 
L(xk; yylc), the branch transition operation to be used in (37) 
and (38) can be written as exp(L(zk;yk)zk/2). 

The forward recursion and the backward recursion of the 
“symbol-by-symbol” MAP algorithm are performed using (37) 
and (38). .In analogy to (44), the MAP rule for block codes 
can be written as 

c ak-l(S’) . Pk(s) 
(s’,s) 

L(‘&) = Lc. Yk + L(t&) + log uk=+l 
c Qk-l(S’) ’ @k(s)’ 

(59) 
(s’,s) 

ulc=-I 

Using the approximation described in Section III-A, the Log- 
MAP realization for systematic block codes results in 

LLo,=MAP(~k) = Lc ’ yk + L(uk) 

+ $F$ (1% ak-l(s’) + l%bk(s)) 
Yk=+l 

with 

- ;5a’: (logak-&‘) + l%pk(s)). (60) 
,,~:I 

logPk-l(s’) = rosy logPk(s) i- iL(xk; YC) .xk . 
> 

(62) 

In the following we will consider further ways of implement- 
ing the MAP decoding rule for linear block codes including a 
priori information in a unified presentation. This goes beyond 
what is known in the literature [2], [25] and is necessary for 
the iterative decoding technique as described in Section II- 
C. The first one implements the original code and is closely 
related to the “symbol-by-symbol” MAP algorithm described 
in this section. The second one uses the dual code and both 
algorithms lead to the same result. Further details are given 
in [26]. 
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D. Straight$orward Implementation of the 
“Symbol-by-Symbol” MAP Algorithm 

Using the definitions (57) and (58) from the previous 
section, (19) can also be written as 

c. WY) 
ZEC,ug=+l 

L(‘iLk) = 1% c p(5,y) 

wzC,ug=-1 

c 
rec,tQ=+1 

= log ( fi P(Yh) . ii 
j=l j=l 

N K 

n P(YjlXj) . l-I 
j=l j=l 

N 
P(Uk = $1; Yk) . c n P(xj;Yj) 

= log 
r~C,uk=+l j=l,j#k 

p(uk = -b!/k) ’ c i?i P(xj;Yj) 
z~C,uk=-1 j=l,j#k 

= L(uk) + h/k 

c exp (L(xj; Yj)xjP) 
+ log 

z~C,u~=+l j=l,j#k 
Ai 

c exp (L(xj; ~jYj)qP) 
r~C,u~=-1 j=l,j#k 

-L(h) 
(63) 

For the evaluation of (63) it is useful to separate the codewords 
into two groups; one with all codewords having a “+l” at the 
lath position, and the other with all codewords having a “-1” 
at the lath position. This separation can already be implemented 
into the trellis by minor changes in the construction principle 
[2]. The trellis is now built up by using all columns of 
the H = (hl,...,hN) matrix excluding the kth one, and 
additionally by storing every path ending at time N at state 
SN = hk. From now on we will call the two possible ending 
states Send1 = 0 and Senda = hk. The time steps ‘;n the 
trellis will be named after the corresponding column of the 
H matrix, so that the lath time instant will no longer appear in 
the trellis. The paths ending in the zero state Send1 represent 
the codewords with a “fl” at the kth position and the paths 
ending in the state Send2 represent the codewords with a “-1” 
at the &h position. 

Using the notation of Section III-C, the numerator of (63) 
is equal to the forward metric of the ending state Send1 = 0, 
aN(Sendr), and the denominator of (63) is equal to the forward 
metric of the second ending state Send:! = hk, QIN(S~~~~). 

Equation (63) can then be written as 

L(ck) = Lcyk + L(‘zLk) + loi%aN(‘%ndl) - 1% aN(‘%ndS). 

(64) 

For the calculation of CyN we can either use the exact formula 
in (37) or its approximation in (61). 

In general, one has to construct K different trellises to 
obtain the soft output L(&) for all information bits. For the 
class of cyclic codes the trellises for the different information 
bits are obtained by simply shifting the indices. Fig. 8 shows 
a block diagram for the calculation of the soft outputs L(uk) 
for the (7,4,3) Hamming code in systematic form. 

Summing up the results of the last two sections we have 
presented two ways of implementing the “symbol-by-symbol” 
MAP rule for linear binary systematic block codes. In both 
realizations we have to build up the trellis (or the modified 
trellis) for the original code with at most 2N-K states. 
Following the ideas of Bahl et al. [9], the soft output for 
all information bits is calculated with one forward and one 
backward recursion in the trellis. Following the ideas of Battail 
et al. [2], the soft output for all information bits is calculated 
with K forward recursions in the modified trellis. The metric 
computations and their approximations are the same in both 
algorithms. 

E. Implementing the “Symbol-by-Symbol” 
MAP Decoder Using the Dual Code 

Hartmann and Rudolph [25] and Battail, et al. [2] found a 
way to calculate the probabilities P(Ul, = &l/v) using the 
codewords of the dual code C’. In coding systems where the 
dual code has fewer codewords than the original code, i.e., if 
N - K < x < K, this results in a reduction of the decoding 
complexity. 

Both publications only present the formula for equally 
probable information bits. Here we will present the extended 
formula, where the a priori information is also involved. 

For the derivation of the formula given in the Appendix 
we follow the idea of Hartmann and Rudolph [25] and finally 
obtain (see (65) at the bottom of this page). Here z’ denotes the 
codewords of the dual code C’, and we use the index i = 1 
for the all-“$1” codeword. 

For i.i.d. information bits Uk, i.e., L(Uk) = 0, a Similar 

relation can be found in [2]. Hartmann and Rudolph [25] 
were only interested in a “symbol-by-symbol” MAP decoder 
with hard outputs, and they did not investigate either soft- 
output information or a priori information. Both are crucial 
for iterative decoding. 

2N-K N 

lf c n (tanh (L(z .. y.)/2))‘1-“‘3)‘2 3, 3 
L(iik) = L,yk + L(uk) + log 

.i=2 j=l,j#k 
ZN-K 

l - %z2 kxbk) j=?i,k banh (L(xii yj)/2))(1-z’J)‘2 

(65) 

. , 
L(G) 
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Fig. 8. ‘Soft-in/soft-out’ decoder for the (7,4,3) Hamming code. 

The dual code C’ can also be represented in a trellis, now 
with a maximum of 2K states. The corresponding metrics for 
every node are for the forward recursion 

and for the backward recursion 

pk-l(s’) =  xrk(s’, s) ’ p,(s). 
s 

(66) 

(67) 

Whenever a transition between s’ and s exists the branch 
transition operation is defined as 

y,?&‘, S) = (tanh(L(zk; yk)/2))(1-“‘)‘2. (68) 

The forward and backward recursion is initialized with 
&a(O) = 1 and with PN(O) = 1, respectively. 

Again we have two ways of implementing the “symbol-by- 
symbol” MAP rule using the dual code. We  can build up the 
full trellis for the dual codewords and run one forward and one 
backward recursion. Then the soft output for each information 
bit is calculated according to 

L(ck) =  h/k +  L(uk) 

+  log 

& &c-l wm 

& Gk-@)~k(~) - .,sq, ~k-ds’)fik(s)’ 

=1,=1-l z’ z-1 k 

(69) 

The other way is to construct the modified trellis for the 
dual codewords according to Section III-D and to perform 
one forward recursion for each information bit. Then the soft 
output can be written as 

SN (SendI) + &N (Send2) 
L(ck) =  ‘%/k +  L(uk) +  log x 

aN(Sendl) - GN (Send:!) 

= LcYk + L(uk) +  2af ianh (~N(Send2)/~N(Sendl)). 

(70) 
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The dual code of a  cyclic code is also cyclic, i.e., the modified 
trellises for every information symbol can be built one from the 
other by simply shifting the indices. In Fig. 9  we see a block 
diagram for the calculation of the soft outputs L(zk) with (70) 
for the (7,4,3) Hamming code implementing its dual code, the 
(7,3,4) maximum length code. The dual code implementation 
has more states than the straightforward implementation shown 
in Fig. 8. However, this is more than compensated by the fact 
that there are fewer code words to be checked, resulting in a 
very sparse trellis. 

F. Simplijcations of the “Symbol-by-Symbol” 
MAP Rule for Some Special Codes  

The simple (N, N - 1) single parity check code (SPC) and 
the (N, 1) repetition code (RC) are both very weak codes, but 
they are excellent tools for constructing powerful concatenated 
codes, e.g., multidimensional product codes or Reed-Muller 
codes. 

The dual code of the SPC has only two codewords, therefore 
the easiest way to obtain the “symbol-by-symbol” MAP rule 
is by using (65). W ith (II), this results in 

L(h) = L,yk + L(Uk) + fj? L(xj; y.j) (71) 
j=l,j#k 

with the last term being the extrinsic information. Again we 
want to stress that one obtains the same formula using (63) 
for the MAP rule after some transformations. For the RC the 
implementation of the original code is the easiest way and we 
obtain as expected 

N 

L(fik) =  cL(xj; Yyj). 
j=l 

(72) 

For i.i.d. information bits only, both formulas can be found 
in the paper by Battail et al. [2], and also in the literature 
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Fig. 9. “Soft-in/soft-out” decoder for the (7,4,3) Hamming code using the dual code implementation. 

lMR=O.80, random intt. 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 
E&, in dB 

Fig. 10. Convolutional-convolutional component codes, component 
codes: memory 2, punctured from rate-l/2 mother code, interleaver size 
Ii1 x  Ii2 = 30 x  30- , six iterations with SOVA, random interleaver. 
For reference purposes the points 0 at R = 0.5 are obtained with a 
block interleaver. 

about threshold decoding and its extension, the a posteriori 
probability (APP) decoder [27], [28]. . 

Suboptimal solutions for the MAP decoder are possible by 
using only a limited number of codewords of the original code 
or the dual code in (63) or (65), respectively. A class of codes 
where the suboptimal solution is easily feasible and which 
is expected to give good results is the class of orthogonal 
codes. For a code with J orthogonal parity check equations, 
a suboptimal solution for the MAP rule can be implemented 
by using the approximate likelihood ratio derived from the J 
orthogonal parity check equations only 

L(‘iLk) z L(& 1 J orth. parity checks) 

=h/k+L(p(k)+~ 
j=l 

Wj denotes the set of positions (without the kth one) of a 
“-1” in the jth orthogonal parity check equation. 

TABLE I 
PARAMETER OF THE CONVOLUTIONAL 

COMPONENT CODES USED IN THE SIMULATIONS 
(The rate of the mother code is l/2. The generator polynomials for the 

memory 2 codes are go(D) = 1 + D + D2, g1 (D) = 1 f D* , and for the 
memory4codesweusedgu(D) = 1+D3+D4,g1(D) = 1+D+D2+D4) 

rate parity puncturing-pattern total 
rate 

w 10000000 0.80 
8110 10001000 0.67 
s/11 10101000 0.57 
8112 
8j13 

10101010 0.50 
11101010 0.44 

8114 11101110 0.40 
8116 11111111 0.33 

IV. SIMULATION RESULTS 

A. Convolutional-Convolutional Component Codes 

Fig. 10 shows the performance of convolutional-convol- 
utional component codes, i.e., convolutional codes in both 
dimensions. Such codes were named “turbo” codes in [8], 
although there is nothing “turbo” in the code. Only the de- 
coder uses feedback information and could be named “turbo” 
decoder in analogy with a turbo engine. The component code 
is realized by a feedback systematic encoder with punctured 
parity bits and its rate varies between l/2 and 819. 

The parameters of the code are given in Table I. Conse- 
quently, the overall code rate R is between l/3 and 8/10. 
The block size K1 x K2 of a random interleaver is fixed 
to be 30 x 30 = 900. This is a good compromise between 
the performance obtained by increasing the block size and 
reasonable delay. 

For reasons of space, it is not possible to refer to the pseudo- 
random interleaver mapping in this paper. No special effort 
was made to optimize this pseudo-random interleaver as in 
[16]. For reference purpose we also show two points with the 
well-defined block interleaver in Fig. 10. Enlarging the block 
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TABLE II 
AVERAGE NLIMBER OF ITERATIONS USING THE STOP CRITERION IN (34) 

(Overall code rate l/2, component code rate 2/3, memory 2, interleaver size I<1 x I<2 = 30 x 30, 
SOVA, AWGN channel, more than 1000 bit error events per measured-points.) 

max. number of iterations: 6 max. number of iterations: 10 
average num- relative increase of average num- relative increase of 

Eb/N, ber of itera- BER due to the use of ber of itera- BER due to the use of 
tions the stop criterion tions the stop criterion 

2.0 4.44 4.87 
2.5 3.42 I 2% 3.51 5 7% 
3.0 2.73 2.74 
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size from 200 to 680, 900, and 3200 improves the coding 
gain at a BER of lop4 by 0.5, 0.7, and 1.2 dB, respectively. 
All the simulations were done for an AWGN channel. Each 
simulation point represents at least lo3 bit error events. In [20] 
we presented simulation results for Rayleigh channels. 

The convolutional code used in Fig. 10 has a memory 
m = 2. We also simulated a convolutional code with m = 
4. However, at a BER of 10B4 the 16-state convolutional 
code behaves only slightly better (0.1 dB) than the 4-state 
convolutional’ code. The SOVA has a significantly lower 
complexity. Therefore, we used for the simulations the SOVA 
instead of the MAP algorithm. Furthermore, the loss of the 
SOVA compared to the MAP algorithm is only about 0.5 dB 
at a BER of 10e5 (Ki x KZ = 900, R = l/2). 

The results with the convolutional component codes im- 
prove with the number of iterations. Most of the gain in 
iterative decoding is achieved by the first two or three iter- 
ations (one iteration includes a horizontal and the following 
vertical decoding). The results presented here are for six 
iterations. At a BER of 10e4 we achieve an additional gain 
of 2.2 dB by going from one iteration to six iterations. By ten 
more iterations the further improvement is only 0.2 dB. 

In Fig. 10 we have presented results with a fixed number of 
iterations. If the cross-entropy is used as a stop criterion the 
number of iterations becomes a random variable resulting in 
a smaller average value. 

This is shown in Table II. The usefulness of the stop 
criterion becomes clear for an operating point of 3 dB. Instead 
of ten iterations we only need an average of 2.74 iterations 
and the small increase in the error rate shows that we miss 
only a few errors. 

B. Block-Block Component Codes 

Fig. 11 shows the performance with simple Hamming codes 
as component codes. We used the dual code method in Section 
III-E for decoding. The resulting overall code rates R are in 
the range of 0.4 to 0.83. The same (N, K, 3) Hamming code 
is used in both dimensions. The block size of the information 
part is K x K. This means that every row or column consists 
of only one codeword and that the interleaver size varies. 
We performed simulations for block as well as for random 
interleaving. The results did not differ much. The curve in 
Fig. 11 shows the results after six iterations. If three iterations 
are used the loss is only about 0.2 dB at a BER of 10m4. 
Note in Fig. 11 that for R = 0.83 the component code with 

10” 
u, RzO.40, (i,4)(7,4) 

1 0.4 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 
E,/N, in dB 

Fig. 11. Block-block component codes with overall code rate R, using 
Hamming codes as component codes, six iterations with (69, interleaver size 
Ii x Ii. 

the simple (63,57,3) Hamming code as component code is 
only 1.2 dB away from the Shannon capacity limit at a BER 
of 10-5, albeit with a block interleaver size of 3249 bits. 
The capacity limit is derived under the assumption of binary 
input/real output channel and for a capacity equal to the code 
rate. 

The block-block decoding system with block interleaving 
fails in decoding a rectangular error pattern (with more than 
d,i,/2 errors in each direction, see Fig. 12(a). Therefore, we 
designed an improved interleaver similar to the one suggested 
by Nilsson [17]. The main idea indicated in Fig. 12(b) is to 
connect as many information bits as possible of a vertical 
codeword to other information bits of vertical codewords via 
the horizontal code. The improved interleaver consists of KZ 
subblocks of size K1 x I, with 1 2 max( K1, Kz). The KZ 
information bits of one vertical codeword are formed by the 
bits at the same position in each of the Kx subblocks. After 
the encoding with the vertical code Cl, the information bits 
in the subblocks are shifted column-wise. Enumerating the 
subblocks from 0 to 1 - 1 the interleaving can be described 
as follows: In the 0th subblock we have no permutation. In 
the first subblock we perform for every column (except the 
first one) a cyclic shift by one position relative to its left 
neighbor column. In the second subblock we perform for 
every column (except the first one) a cyclic shift by two 
positions relative to its left neighbor column, etc.. After these 
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Fig. 12. (a) Noncorrectable error pattern for the block interleaver. (b) With 
the improved interleaver this error pattern is correctable. (c) Improved 
interleaving scheme for the (7,4,3) Hamming code with 2 = 4. 

permutations, the horizontal code is taken over each of the 
I . K2 rows of the subblocks. If we choose 1 to be the smallest 
prime number with 1 2 max(Kr, Kz), then we can correct 

x-b R=O.Kl, (+,4)(7,4), in&wed interl. 114 x-b Re0.40, (+,4)(7,4), in&wed interl. 114 
+-OR=O.58, (15,11)(15,11), improvedinted. I=11 +-OR=O.58, (15,11)(15,11), improvedinted. I=11 

_,........... :............ MR=O.72. (31,26)(31.26), improved interl. k26 _,........... :............ MR=O.72. (31,26)(31.26), improved interl. k26 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 
EJN, in dB 

Fig. 13. Block-block component codes with rate R, using Hamming codes 
as component codes, six iterations with (69, improved interleaver ‘of size 
Ii x  (I Ii) as in Fig. 12. 

every rectangular error pattern with more than d,i,/2 errors 
in each direction. Otherwise, some of the rectangular error 
patterns might remain uncorrectable. Fig. 12(c) shows the 
whole improved interleaving scheme for the (7,4,3) Hamming 
code with 1 = 4. The results given in Fig. 13 are obtained 
using the improved interleaver with 1 = K. We also simulated 
the improved interleaver with Z  = 5 for the (7,4,3) Hamming 
code and with 1 = 29 for the (31,26,3) Hamming code, but 
the results showed no significant difference compared to those 
presented in Fig. 13. 

After submission of the paper we became aware of the paper 
[29], in which a modified Chase algorithm is used for iterative 
decoding. However, in [29] they use ‘factors optimized by 
simulation’ for weighting the soft information. Although a full 
product code with a lower rate is used, their results are worse 
by 0.4 dB at a  BER above 10P5. 

C. Discussion of the Simulation Results 

The simulation results point out that convolu- 
tional-convolutional component codes perform well at 
low code rates. On the other hand, Hamming-Hamming 
component codes perform well at high rates. For a given BER 
it is possible to define a “threshold rate”: for rates smaller 
than this value, one should use convolutional-convolutional 
codes, and for rates greater than this rate it is better to choose 
block-block codes. For the simulated code combinations the 
threshold rate is 0.67 at a  BER of 10P4. This is because 
high rate punctured convolutional codes are very weak as 
component codes, whereas good high-rate block codes exist 
which can be decoded with a reasonable complexity using 
the method given in Section III-E. 

The combination of convolutional and Hamming codes is 
also possible and we performed several simulations. How- 
ever, our simulations showed that this combination is worse 
than a convolutional-convolutional or Hamming-Hamming 
code. Only for rates near the threshold rate the combination 
of convolutional and Hamming codes performs as well as 
the Hamming-Hamming codes. In our simulations we used 
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the suboptimal SOVA and the optimal MAP algorithm for as the notation for the N-dimensional vector with “- 1” in the 
decoding the convolutional and the block code, respectively. kth postion and “+l” elsewhere we obtain 

V. CONCLUSIONS 
P(UL = b ly) = & c P (5, Y) 

ztc 
uIc=b 

We have investigated several aspects of systematic two- 
or more dimensional codes decoded by iterative “soft-in/soft- 
out” decoders. Iterative decoding is possible for convolutional 
codes in systematic feedback form, for any systematic block 
code or for combinations thereof using appropriate “soft- 
in/soft-out” algorithms derived from the MAP principle. The 
so-called “turbo” codes in [8] are just one example. For 
achieving nearly optimal performance the proper transferring 
of extrinsic information, from one iteration to the next, is 
crucial. 

= --& C P (2, Y) . S+i,(xae,c3b). (74) 
3232 

Futhermore, we define the a priori probability 
element ‘u of the whole vector space V, to be 

Pv (71) of any 

(75) 

We  conclude that very simple component codes such as 
the 4-state convolutional code and the Hamming codes are 
sufficient to achieve surprisingly good results. The minimum 
free distance of the component codes and the resulting mini- 
mum free distance of the two-dimensional code is not of prime 
importance for bit error rates above 10p5. The interleaver, 
the soft-output component decoder, and the method of infor- 
mation transfer between the component decoders influences 
the performance. We  urgently need tools to analyze and 
bound the performance in this range. As pointed out by 
Battail [4] very early, the asymptotic distance properties are of 
minor importance for this type of iteratively decoded codes. 
The variety of algorithms and combinations needs further 
investigation including the usage of other binary block codes 
and the search for suboptimal decoder algorithms. 

However, with these simple codes and the associated de- 
coding tools we achieve a BER of 10e4 with an Eb/No 
of only 2 to 3 dB and rate l/2. This is around the value 
determined by the cutoff rate and is only 2 dB away from 
the channel capacity limit. For higher rates and with simple 
block codes as component codes, we are even closer to the 
capacity limit. 

Hence, for the joint probability density function pv,y(w, y) =  
p(y]v) . Pv(v) using the definition of p(vj; yj) in (57) and 
(75) we obtain 

PV,Y (‘u, Y) = & fi P(Yh) fi P(9) 
j=1 j=l 

= 2K-N fi p(vj; yj) 
j=l 

(76) 

and for the joint probability function of codewords px,y(z, y) 
we get 

PX,Y (x3 Y) = 2 N-KPv,Y (VI Y) IVE2. (77) 

Defining the finite Fourier transform 

PV,Y(? Y) = $ c  F(w, Y)W 0 21 
V&V, 

(78) 

and using (77), px,y (z, y) can be written as 

px,y(x, y) = $  c F (w, Y>W 0 x 
WEVN 

(79) 

APPENDIX 
where 

DERIVATION FOR THE “SYMBOL-BY-SYMBOL" 
MAP DECODING RULE USINGTHE DUAL CODE 

F(w, y) = c PV,YhY)W 0 ‘u 

The main idea is to express P(uk = bly), b  E GF(2) 
with the elements { +l, -l}, as a function’ over the whole 
code space and to use the finite Fourier transform. Hereby 
we follow the derivation found in [25]. Note that “$1” is 
the “null” element under the @  addition, and that “-1” is 
the “one” element under the @  multiplication. For vectors 
‘u 0 w denotes the scalar product in GF (2), where ‘u and w are 
elements of the vector space V, of all N-tuples over GF (2). 
We  only consider linear binary block codes in systematic form, 
where the information bits uk are statistically independent. The 
codeword 2 is transmitted over a time-discrete memoryless 
channel. Defining S;,, = 1, if i = j and S;,j = 0, if i #  j 
and using 

ZZ 2K-N fi (p(+l; guj) + ~(-1; ~j)wj). (80) 
j=l 

Furthermore, observe that 

fi+l,(zOwM) = Z j 1  c ta(x~ek@b). (81) tE{+l,-11 
Using the relation of a  dual code z’ E C’ 

ek = (1 - 2Sk,l,...,l- 2Sk,~) 

c 
wax= (82) 

XEC 
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2N-K N 

c c n (1 + XLj $  t @  (1 - 2&j) . e-L(zJq 

= log 
t~{+l,-l} i=l j=l 

2N-K N 
(84) 

C t C n (1 + xij @  t 0  (1 - 2Sk,j) . e-L(zJ;YJ)) 
tE{+l,-l) i=l j=l 

and substituting (81) and (79) in (74) finally yields 

quk = b /y) = & c t o  b  c F (x’ @  t 0  erc,y). 
tE{+l,-l) X’EC’ 

(83) 
Applying (80) to (83) and using the definition of L(sj; yj) in 
(58) we obtain (see (84) at the top of the page). After explicitly 
rewriting the first sum and extracting the kth term from the 
product, the numerator and the denominator in (84) can be 
written as 

2N-K N 

(85) 
i=l j=l,j#k 

and 

2&K 

2. e-ek;Yk) . C  xik fi (1 + xij epL(“21Yj)) (86) 
i=l j=l,j#k 

respectively. Dividing (85) and (86) by the term 

N 

rI ( 
1 + e-G, iYJ 1 

> 
j=l,j#k 

and with the transformation 

N 

0 

1 + xLj . eeLCz2;Yj) 

j=l,j#k 
1 + e-L(z3iY3) 

N  

=U 

exp (L(zj; yj)) - 1  (1-z:J)‘2 
exp (L(xj; ~j)) + 1 

(87) 
j=l,j#k 

we finally obtain 

Using again the relation 

tanh (x/2) = (ez - l)/(e” + 1) 

and using the index i = 1 for the all-“t-1” codeword, the 
formula can also be written as 

2&K N 

1+ c n (tanh (L(x (. y ~)/2))“-“‘J”2 3, 3  
L(‘iik) = L&k + L(uk) + log 

i=2 j=l,j#k 

2N-K 
1 - ij2 (-xik,) jzg+k (tanhlL(Xji %)/2))‘1-“r3)‘2 

(89) 

or using (13) as 

L(ck) =  &/k +  L(Uk) +  log (90) 

which allows the approximation given in (12). 
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