
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 2, MARCH 1996 429

Iterative Decoding of Binary
Block and Convolutional Codes

Joachim Hagenauer, Fellow, ZEEE, Elke Offer, and Lutz Papke

Abstract- Iterative decoding of two-dimensional systematic
convolutional codes has been termed “turbo” (de)coding. Using
log-likelihood algebra, we show that any decoder can he used
which accepts soft inputs-including a priori values-and delivers
soft outputs that can he split into three terms: the soft channel and
a priori inputs, and the extrinsic value. The extrinsic value is used
as an a priori value for the next iteration. Decoding algorithms in
the log-likelihood domain are given not only for convolutional
codes hut also for any linear binary systematic block code.
The iteration is controlled by a stop criterion der ived from
cross entropy, which results in a minimal number of iterations.
Optimal and suboptimal decoders with reduced complexity are
presented. Simulation results show that very simple component
codes are sufficient, block codes are appropriate for high rates
and convolutional codes for lower rates less than 213 . Any
combinat ion of block and convolutional component codes is
possible. Several interleaving techniques are described. At a bit
error rate (BER) of lo-* the performance is slightly above or
a round the bounds given by the cutoff rate for reasonably simple
block/convolutional component codes, interleaver sizes less than
1000 and for three to six iterations.

Index Terms- Concatenated codes, product codes, iterative
decoding, “soft-inlsoft-out” decoder, “turbo” (de)coding.

I. INTRODUCTION

S INCE the early days of information and coding theory the
goal has always been to come close to the Shannon limit

performance with a tolerable complexity. The results achieved
so far show that it is relatively easy to operate at signal-
to-noise ratios of &/No above the value determined by the
channel cutoff rate. For a rate l/2 code and soft decisions on
a binary input additive white Gaussian noise (AWGN) channel
the cutoff rate bound is at 2.5 dB, as opposed to the capacity
limit which for rate l/2 is at 0.2 dB. It is generally held that
between those two values of &/No the task becomes very
complex. Previously known methods of breaking this barrier
were a) sequential decoding with the drawback of time and/or
storage overflow and b) concatenated coding using Viterbi and
ReedSolomon decoders which achieve 1.6 dB at the cost of
a large interleaver and feedback between two decoders [11.

Recently, interest has focused on iterative decoding of prod-
uct or concatenated codes using “soft-in/soft-out” decoders

Manuscript received September 7, 1994; revised August 20, 1995.
J. Hagenauer is with the Technical University of Munich, D-80290 Munich,

Germany.
E. Offer and L. Papke are with the Institute for Communicat ions Technol-

ogy, German Aerospace Research Establishment (DLR), Oberpfaffenhofen,
D-82230 Wessling, P.O. Box 1116, Germany.

Publisher Item Identifier S 0018-9448(96)01474-5.

with fairly simple component codes in an interleaved scheme.
The basic idea is to break up decoding of a fairly complex
and long code into steps while the transfer of probabilities
or “soft” information between the decoding steps guarantees
almost no loss of information. A flavor of the idea can be
found in the work of Battail, e.g., [2]-[4]. Iterative decoding
schemes with “soft-in/soft-out” decoders were proposed in
[5]-[7]. In [6] an Eb/No of 1.3 dB was achieved for the above
mentioned channel with a three-dimensional code of moderate
complexity. Impressive simulation results were presented in
[8] achieving an E,,/No of 0.7 dB, although with a huge
interleaver of 64 500 bits, 18 iterations, and some ad hoc “fine-
tuning” factors in the Bahl algorithm [9]. The novelty in [8]
was the use of systematic feedback convolutional codes in the
iterative scheme and the introduction of a “pseudo’‘-random
interleaver (scrambler) between the two encoders. In the paper
[IO] some information-theory-based interpretation of iterative
decoding is given.

The intention of this paper is to present the method of
iterative decoding in a unified framework. We shall present
several “soft-in/soft-out” algorithms which have the desired
property that extrinsic information is used as a priori in-
formation in the next iteration step. We will show that any
linear binary code in systematic form can be used as the
component code and that “soft-in/soft-out” algorithms exist
for these codes. The problem is the complexity; therefore,
low-complexity algorithms such as the modified soft-output
Viterbi algorithm (SOVA) will be presented [ll], [12]. Cross-
entropy introduced in [131 and [141 for iterative decoding
will provide a useful criterion for stopping the iterations.
Unfortunately, satisfying analytic results are not yet available.
We shall present simulation results for convolutional and block
codes.

II. TOOLS FOR ITERATIVE DECODING OF BINARY CODES

A. Log-Likel ihood Algebra ’

Let U be in GF (2) with the elements {+l, -l}, where +l
is the “null” element under the 8 addition. The log-likelihood
ratio of a binary random variable U, Lu(u), is defined as

L/y(u) = log Pu(u = +1)
Pu(u = -1)

Here Pu(u) denotes the probability that the random variable
U takes on the value u. The log-likelihood ratio Lu(u) will
be denoted as the “soft” value, or the L-value of the random

001%9448/96$05.00 0 1996 IEEE

430 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 2, MARCH 1996

variable U. The sign of Lu(u) is the hard decision and the
magnitude ILu(u)I is the reliability of this decision. Unless
stated otherwise, the logarithm is the natural logarithm.

If the binary random variable U is conditioned on a different
random variable or vector Y, then we have a conditioned
log-likelihood ratio Lu~y(uIy) with

LUIY(UIY) = 1% h(u = +llY)
eY(u = -1lY)
Piy(u = +1) PYldYlU = fl)

= log Pu(u = -1) + logpy,u(ylu = -1)

= Lu(u) + LYIU(YlU). (2)

is true. Using the relation tanh(u/2) = (e” - l)/(e” + 1)we
obtain [3]

.I 1 + fi tanh(L(uj)/2)
g L(Uj) = log j=J1
j=l 1 - n tanh (L(uj)/2)

j=l

= 2artanh (i tanh(L(,r,)/2)) (11)

and finally approximate it as in (6) by

When there is no danger of confusion, we will henceforth skip
the indices for the probabilities and the log-likelihood ratios.

& L(Uj) = L 5 uj

Notice that the joint log-likelihood L(u, y) is equal to the
j=l (1

j=l

conditioned log-likelihood L(uly) since the probability P(y)
term can be canceled out. Using the relations = (fi sign (LC~jli) . jzinJ ILC~jIl. (12)

P(u1 $ u4? = +1) = P(Ul = +1). P(u3 = fl)
+ (1 - P(Ui = +1)) . (1 - P(u2 = fl))

with

The reliability of the sum W is therefore determined by
(3) the smallest reliability of the terms. From (11) we get the

symmetrical relation

eLCu)
P(u = +1) = l + eL(u) (4) = fi tanh(L(uj)/2) (13)

j=l

it is easy to prove for statistically independent random vari- to be used in the Appendix.
ables lJ1 and lJ2

1 + euw)eL(w)
LCUl @U2) =l"g eL(ul)+ eL(u2)

z sign (L(ul)) . sign (L(u2))

. m inW w)l, IL(u2)l).

B. Soft Channel Outputs

(5) Now, we will define more clearly what is meant by the
“soft values” of a channel. If we encode the binary value u

(6)
having a soft value L(u) then we create coded bits z with soft
values L(z). For an (N, &)-systematic code, K of the bits z

From now on we will use a special algebra for the log- are equal to the information bits u. After transmission over a

likelihood ratio values L(u): We use the symbol EE as the binary symmetric channel (BSC) or a Gaussian/fading channel
we can calculate the log-likelihood ratio of z conditioned on notation for the addition denned by

A
(7)

the matched filter output y

L(w) H L(u2) = JqUl @ u2)

with the additional rules

L(u) •l 03 = L(u) L(u) H -KJ = -L(u)

and

L(u) H 0 = 0.

L(xly) = log p(x = +lly)
P(x = -1ly)

(
P(YlZ = +1)

= log p(yls = -1)

By induction one can further prove that

&L(&L $Uj
j=l

()
j=l

fi (eL@J) + 1) + h (eL(“j) - 1)
= log+J1 j=l

n (eLcv2) + 1) - fi (eL(v,) - 1)
j=l j=l

(8)

P(x = +1)

> P(x = -1) (14)

W ith our notation we obtain

(9) L(4Y) = 1%
exp(-%(y - u)“) P(x = +1).
exp (-%(Y + aI21 + log p(x = -1)

= L, . y + L(sj (15)

with L, = 4a . Es/No. For a fading channel, a denotes the
fading amplitude whereas for a Gaussian channel we set a = 1.
For a BSC, L, is the log-likelihood ratio of the crossover
probabilities Pa, where L, = log ((1 - Po)/Po). L, is called
the reliability value of the channel.

(10)
We further note that for statistically independent transmis-

sion, as in dual diversity or with a repetition code

L(4Yl,YZ) = L,,yyl + L,,y2 + L(x). (16)

HAGENAUER et al.: ITERATIVE DECODING OF BINARY BLOCK AND CONVOLUTIONAL CODES 431

Fig. 1. Iterative decoding scheme for two-dimensional codes.

For the rest of the paper we assume a channel with constant
reliability denoted by L,. In the general case (fading, etc.) L,
is time-variant and would have the same additional index as y.

C. Principle of Iterative Decoding Algorithms

We show the principle of iterative decoding in the two-
dimensional case [5], [8]. The K1 . K2 information bits u are
ordered in a rectangular matrix as shown in Fig. 1. Attached
to it are the parity bits p- and pl of the two systematic codes
C- and Cl. The received values at the matched filter output
are denoted by y and L, . y which are available to the decoder
for all coded bits.

We will first use a simple example to demonstrate the main
ideas. Then we will proceed with the general case for block
codes and for convolutional codes and conclude with some
generalizations.

I) Tutorial Example with the (3,2,2) Single Parity Check
Code as Component Code: Let us encode four information
bits by two (3,2,2) single parity check codes with elements
{fl, -1) in GF(2) as shown in Fig. 2(b) and let us assume
we have received the values L, . y shown in Fig. 2(c). No a
priori information is yet available. Let us start with horizontal
decoding: The information for bit ~11 is received twice:
Directly via ull and indirectly via ~12 @ ~1. Since ~12 and
pr are transmitted statistically independent we have for their
L-value

L(u12 $ p;) = L(u12) H L(p,) = 1.5 H 1.0 Z 1.0.

This indirect information about ~11 is called the extrinsic
value and is stored in Fig. 2(d). For ~12 we obtain by the
same argument a horizontal extrinsic value of 0.5 H 1.0 M 0.5
and so on for the second row. When the horizontal extrinsic
table is filled we start vertical decoding using these L; as
a priori values for vertical decoding. This means that after

(a)

Received values L; y

Cc)

+2.0 +o.s q +1.5 -2.0

Coded values

(b)

+l.O +0.5 q -1.0 -1.5

Extrinsic information L- after
first horizontal decodint

Cd)

Extrinsic information L’ after
first vertical decoding e

Soft output after the
first horizontal and
vertical decoding

(e) 0-J
Fig. 2. Example for iterative decoding of a rate-l/2 code using two rate-2/3
single parity check codes.

vertical decoding of ~11 we have the following three L-values
available for ~11:

l the received direct value f0.5,
l the a priori value L; from horizontal decoding +l.O and
l the vertical extrinsic value Lk using all the available

information on ~21 @pi, namely, (4.0 + (-1.0)) q 2.0 M
2.0.

The vertical extrinsic value is stored in the table of Fig. 2(e).
For uzl it amounts to (0.5 + 1.0) EB 2.0 M 1.5, for ~12 to
(1.0 + (-1.5)) q (-2.5) M 0.5, and for ~22 to (1.5 + 0.5) •]
(-2.5) M -2.0. If we were to stop the iterations here we
would obtain as soft output after the vertical iteration

L(B) = L, . y + L, + Lk (17)

shown in Fig. 2(f). The addition in (17) is justified from (16)
because up to now the three terms in (17) are statistically
independent. We could now continue with another round
of horizontal decoding using the respective Lk as a priori
information. However, now we encounter statistical depen-
dencies. Anyway, in our example we have already correctly
decoded with good reliabilities IL(G) I. The desired statistical
independence is one of the reasons why we are not using a full

432 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 2, MARCH 1996

input log-likelihoods output log-likelihoods

:1
: : 0 priori values for

all information bits L(uj I \ c ‘Soft-In
/: / ’

’ ’
extrinsic values for

b all information bits

/ ’ / ’
1 $$I

1 ’ Soft-Out’ / /
channel values for Decoder
all code bits

i Ip

L, Y ‘;:

\ I c aposteriori values for
I ’
:/’ u3

all information bits

Fig. 3. “Soft-in/soft-out” decoder

product code. Note that we are determining extrinsic values to
be used as a priori values only for information bits and not
for parity bits, because codeword probabilities are determined
from a priori probabilities of information bits only. This will
become clear in Section III-C.

2) General Setup with Block Codes as Component Codes:
We can use any combination of systematic block codes for
encoding the K1 . K2 information bits in the horizontal or
vertical direction. One example might be

Horizontally: K2 code words of a (Kl, Nl) block code
C- with rate RI = Kl/Nl .

Vertically: K1 code words of a (Kz, N2) block code
Cl with rate R2 = Kz/Nz .

If we mean either the vertical or the horizontal code, we
drop the indices 1 and 2. The total rate of the two-dimensional
code will be

R=
1 1

I+ (Nz-Kz)KI + (N~--K~)K~ = &+&-1’
(18)

KIKZ KIKZ

Each row or column of the information matrix forms an
information sequence u to be encoded into a codeword

where x E C- or x E Cl, respectively.
In the remainder of this section we shall omit the indices

in u and y for the sake of brevity. Assume we have a “soft-
in/soft-out” decoder available as shown in Fig. 3 for decoding
the component codes. The output of the “symbol-by-symbol”’
maximum a posteriori (MAP) decoder is defined as the a
posteriori log-likelihood ratio for a transmitted “$1” and a
transmitted “ -1” in the information sequence

L(C) b L(uly) = log P(u = +1ly)
P(u = -1ly)’ (19)

Such a decoder uses a priori values L(U) for all information
bits U, if available, and channel values L, . y for all coded
bits. It also delivers soft outputs L(C) on all information bits
and an extrinsic information L,(C) which contains the soft
output information from all the other coded bits in the code
sequence and is not influenced by the L(u) and L, . y values
of the current bit. For systematic codes, the soft output for the
information bit u will be represented in Section III in three
additive terms

L(C) = L, . y + L(u) + Le(ii). (20)

This means we have three independent estimates for the log-
likelihood ratio of the information bits: The channel values
L, . y, the a priori values L(u) and the values L,(C) by
a third independent estimator utilizing the code constraint.
Assume equally likely information bits: Then we do not have
any a priori information available for the first iteration, thus
we initialize L(u) = 0. Decoding of the horizontal code C-
starts using the corresponding L, . y for the information part
and for the horizontal parity part. The extrinsic information
L;(C) of the horizontal code C- on the information bit u is
from (20)

L,(Q)=L-(ii-LL,.y. (21)

This independent estimate on u is now used as the a priori
value for decoding code C’ vertically to obtain

Lk(ii)=LI@-(L,.y+L,@)). (22)

This vertical extrinsic information will be used as new a priori
value in the subsequent decoding of code C- in the next itera-
tion step. Note that for the first horizontal and the first vertical
iteration the L-values are statistically independent, but since
later on they will use the same information indirectly, they will
become more and more correlated and finally the improvement
through the iterations will be marginal. Of course, for the final
decision (or soft output) after the last vertical iteration we
combine the last two extrinsic pieces of information with the
received values to obtain

L(C) = L, . y + L,(C) + L$) (23)

which, using (22), is identical to LI (6). The whole procedure
is shown in Fig. 4.

.3) General Setup with Convolutional Codes as Component
Codei: Convolutional codes are used with a systematic feed-
back realization of the encoder. If the generator matrix of a
rate l/n encoder is

G(D) = (go(D) a(D). . .a-l(D))

the feedback encoder will be

Gsys(D) = 1 $$. . . ‘;;;$) . (24)

We will later use the generator polynomials go(D) = 1 +
D + D2, gl(D) = 1 + D2, and go(D) = 1 + D3 + D4,
g1 (D) = 1+ D + D2 + D4 for the rate-l/2 convolutional code
with memory m = 2 and memory m = 4, respectively. Fig. 5

HAGENAUER et al.: ITERATIVE DECODING OF BINARY BLOCK AND CONVOLUTIONAL CODES 433

I feedback for the next iteration
I

L; 6)
b

‘Soft-In/Soft-Out’ ‘Soft-In/Soft-Out’ I
I Decoder for the Decoder for the I

vertical Co&C 1 d(e) i Ufi)
i atthe
1 final
; iteration

I I
_-___-___-_-___-_-_-____________________------------------------~

Fig. 4. Iterative decoding procedure with two “soft-in/soft-out” decoders with initial L(U) = 0, i.e., equally likely source (information) bits.

X =u
k,l k

Fig. 5. Realization of the systematic convolutional encoder with feedback
for the rate-l/2 code with memory 2. The generator polynomials are
go(D) = 1+ D + D2 and gl(D) = 1+ 0’

shows a realization of the convolutional encoder with feedback
for the 4-state code. The parity check bits are punctured to
achieve the desired higher rate i/G. Now we use as component
codes

Horizontally: A code sequence of a convolutional code of
rate RI = &/Gl. This code is punctured from
a rate l/n1 mother code which has memory
m l and a binary trellis with 2”1 states. We
assume that K1 and Nl are multiples of ,&
and fil.

Vertically: A code sequence of a convolutional code of
rate R2 = i2/fi2, punctured from a rate l/n2
mother code with 2”2 states. Again K2 and
N2 are chosen as multiples of ,& and G2.

Using a convolutional code, the K1 . K2 information bits u
are first encoded into the systematic code sequence

x= (Xl,... ,xk,‘..,xK1.Kz)

with

xk = (xk,l, zk,Z!, . ” , Zk,n) Z- = (Uk,pk,l, ... ,Pk,n-l)T (25)

where x E C- or x E Cl, respectively. Some of the parity bits

xk,v = pk,v-1, l<k<Kl.K2, 2ju<n

in the code sequence might be punctured according to the
puncturing rule. If the information bit ?& is transmitted,
1 I k 5 KI. K2, we receive the value Lc.Yk,l. The respective
values for the nonpunctured parities are xk,, and Lc.g+. Note

that we use k as a running index either for the information bits,
the coded bits, or the channel values.

The problem of the termination of the convolutional code
can be solved by terminating code C- by ml known bits and
leaving code Cl open [15].

4) Generalizations: Several generalizations of the decoding
schemes in Sections II-C2 and II-C3 are possible.

4
b)

cl

4

e>

Combinations of block and convolutional codes.
The extension to more than two dimensions is obvious
and has been investigated in [5] and [6].
Although “soft-in/soft-out” decoding is in principle also
possible with codes in nonsystematic form, we only will
use codes with systematic encoders for the following
reasons:

l Codes in their systematic and nonsystematic form
give equivalent codes.

l It is well known that systematic convolutional feed-
forward encoders produce less powerful codes and
therefore they are not considered here. Convolutional
codes in their systematic feedback form are equiva-
lent to the nonsystematic form in distance and nearest
neighbor path properties. However, the BER at low
signal-to-noise ratio (SNR) is slightly better.

l A nonsystematic two-dimensional implementation
would force us to transmit the encoded informa-
tion part twice,’ reducing the overall code rate
dramatically.

In the rare cases where we have outside information that
the source (information) bits are not equally likely, we
have to add this source a priori information L,(u) to all
the a priori values in the iterations.
The interleaver need not be in vertical and horizontal
block form. Any “pseudo’‘-random permutation of the
information bits for the second encoding is possible and
might result in a better BER [8], [16], and [17].

D. Convergence Properties of Iterative
Decoding via Cross-Entropy

Battail [131 and Moher [141 have shown that cross-entropy
is a useful criterion for iterative decoding. We will show how

434 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 2, MARCH 1996

cross-entropy transforms into our notation and that it is a useful Further, if the reliabilities are large enough, we have with
stop criterion for an iterative algorithm. log(l + X) = Z

Let the soft output have the structure as described in Section
II-C, (23). We then have two a posteriori distributions of
subsequent decoding operations. The cross-entropy of two
distributions P(G) and Q(G) is defined as

Ep{ log a} z exp (-IL$‘(&)l)

. (1 - exp (-Gf’AL;‘“‘(&))

+{1og$#} (26)

and is a measure of the difference (“closeness”) of two
distributions. Here Ep denotes the expectation operator over
the distribution P(G). Assuming statistical independence, we
obtain

(27)

Now, let us look at two subsequent iterations (i - 1) and (i),
where one iteration consists of the decoding in the “horizontal”
and the “vertical” direction. We define

Ll;)(Q = L, . yk + L, (t-1)(iiLlc) + Lk’% ‘(&) (28)

L$)(Qli) = L, . yk + LCi’ (?I&) + L,(l) (&) (29)

and therefore the difference in the soft outputs equals

(i) (i) n t
L, (&) - LQ (z&) = L,’ I(&) - L, (a-1) (&k)

= AL, (%I (&). (30)

. (1+ Gf)AL;‘i’(iib))). (32)

As long as AL;“’ has the same sign as 6:) and a magnitude
smaller than 1, we take the first two terms of the series
expansion of exp (x) and further obtain

Of course, the assumption of statistical independence between
likelihood values is not exactly true after some iterations.
Nevertheless, we could use the criterion

T(i) = c
jAL,“)(i&)l

(4 ^ < threshold (34)
k exp(iL~ (Uk)i)

as a stop criterion for the iterations. Simulation results have
shown that T(i) drops by a factor of lo-’ to lop4 once
no more errors will be corrected and a threshold value of
T(1) . lop3 is appropriate to stop the iterations. The benefit of
this stop criterion will be shown in Section IV-A in Table II.

Using the inverse of (1) III. OPTIMAL AND SUBOPTIMAL ALGORITHMS

and

A. “Symbol-by-Symbol” Maximum A Posteriori Probability
(MAP) Decoding Rule for Systematic Convolutional
Codes in Feedback Form with a Binary Trellis

it is straightforward to show that

= -AL,‘i’ ’
1 + exp (L$‘(&))

+ log
1 + exp (-L$)(iik))

1 + exp (-L$?(iik))

z -@AL;(‘) (ck) 1

1 + exp (IL$?(&k)l)

+ log 1 + exp (-IL$‘@k)l)

1 + exp (-ILg)(iik)l) ’
(31)

The last approximation is valid, when the decisions do not

The MAP algorithm for trellis codes was proposed simul-
taneously by Bahl, Cock& Jelinek, and Raviv in [181 (and
later in [9]) and by McAdam, Welch, and Weber in [19].
In [8] the algorithm was adapted to systematic convolutional
codes. Here we will show how the MAP decoder uses log-
likelihood values and that its output has the general structure
given in (20). In [16] and [20] the structure of such decoders
was illuminated and simulation results for the Bahl algorithm
including optimized interleavers were presented.

The trellis of a binary feedback convolutional encoder has
the structure shown in Fig. 6. Let Sk be the encoder state at
time /G The bit uk is associated with the transition from time
Ic - 1 to time Ic. The trellis states at level k - 1 and at level
k are indexed by the integer s’ and s, respectively,The goal
of the MAP algorithm is to provide us with

L(ck) = log p(uk = +llY)
p(uk = -II!/)

uk=-l

change anymore, i.e., when

(9 (;I n -(i) sign (Lp (&)) = sign (Lo (‘&)) = Uk .

The index pair s’ and s determines the information bit uk and
the coded bits x+, for v = 2, . , n. The sum of the joint
probabilities ~(s’, s, y) in the numerator or in the denominator

HAGENAUER et al.: ITERATIVE DECODING OF BINARY BLOCK AND CONVOLUTIONAL CODES 435

of (35) is taken over all existing transitions from state s’ to
state s labeled with the information bit uk = fl or with
Uk = -1, respectively. Assuming a memoryless transmission
channel, the joint probability p(s’, s, y) can be written as the
product of three independent probabilities [9]

ds’, s, !/) = P(s’, ?/j<k) . ds, !/kb’) . d!&i>k b)

= ds’&j<k) +(+‘) ‘P(!/kb’, s, ?(?/j>klS)

= ak--1(S’) . ‘-Yk(S’, S) . Pk(S). (36)

Here yj<k denotes the sequence of received symbols yj from
the beginning of the trellis up to time Ic - 1 and yj>k is the
corresponding sequence from time Ic + 1 up to the end of the
trellis. The forward recursion of the MAP algorithm yields

ak(S) = c?‘k(S’> S) . ak-I@‘).
s’

(37)

The backward recursion yields

pk-l(S’) = c yk(S’, S) ’ @k(S). (38)
s

In order to perform the optimum “symbol-by-symbol” MAP
rule, the trellis has to be of finite duration. We assume that at
the start and at the end of the observed sequence all paths
merge at the zero state. Then the forward and backward
recursion are initialized with astart = 1 and Pend(0) = 1.
Whenever a transition between s’ and s exists the branch
transition probabilities are given by

‘-Yk(S’,S) = P(!/kbk) ’ p(uk). (39)

Using the log-likelihoods, the a priori probability P(uk) can
be expressed as

P(uk = fl) =

= Al, . eL(dQ/2 (40)

and, in a similar way, the conditioned probability p(yl,]uk) for
systematic convolutional codes can be written as

n

dhk) = Bk . exP +c?lk;luk + ; c Lcyk,dk,v .
v=2

(41)

Keep in mind that some of the coded bits might be punctured
before transmission, in which case the sum in (41) is only over
those indices v corresponding to nonpunctured coded bits. The
terms Ak and Bk in (40) and (41) are equal for all transitions
from level k - 1 to level Ic and hence will cancel out in the
ratio of (35). Therefore, the branch transition operation to be
used in (37) and (38) reduces to the expression

~uk(Ldk,l + L(Uk)) (42)

with

yp)(s’, s) = exp

State index s’ State index s

States St., States Sk
with forward with backward
probabilities akm, (s’) probabilities p, (s)

-1

jxqTzxT

At the transistions the labels are x = u , x x
k.1 k k.2’ “’ ’ k,n

Fig. 6. Trellis structure of systematic convolutional codes with feedback
encoders.

Since the first exponential function in (42) is common in all
terms in the sums of (35), we divide all terms by those and
obtain

L(ak) = h/k,1 + L(uk)

c -$)(s',s) ' Qk-l(S') '@k(S)
(s'.s)

+log ;;$;j1 yf)(d,s) '&!&l(d) $k(s)' (44)

uIc=-l

Thus we have shown that the MAP algorithm for systematic
codes has the structure of (20). We can avoid calculating
actual probabilities by using the logarithm of probabilities and
the approximation log (eL1 + eLz) M max(L1, Lz). Then this
algorithmworkswithlogolk(s),logPk-r(s’), andlogyk(s’,s)
and the summations in .(37), (38), and (44) are replaced
by the corresponding maximizations. For the remainder of
the paper we will refer to this suboptimal realization of
the “symbol-by-symbol” MAP rule as the Log-MAP rule
realization. Investigations have shown that the performance
of the Log-MAP algorithm is close to the optimal “symbol-
by-symbol” MAP algorithm, in particular when the above
approximation is improved by adding a correction term to
max (Ll, L2) having eight possible values [21].

B. The “Soft-In/Soft-Out” Viterbi Algorithm
(SOVA) for Systematic Convolutional Codes in
Feedback Form with a Binary Trellis

The Viterbi algorithm (VA) in its MAP form is described in
[22]. It searches for the ith-state sequence S(i) and thus the
desired information sequence ~(‘1 by maximizing over i the
a posteriori probability

Wq/) = PCYIS 2 I&.
(‘) P(5+)

(45)

Since y is fixed we can equivalently maximize

p(yppp). (46)

This maximization is realized in the code trellis, when for each
state s and each time !c, the path with the largest probability

436 IEEE TRANSACTIONS ON PiFORMATION THEORY, VOL. 42, NO. 2, MARCH 1996

/.
I

time index j ~ j<k I J=k / k<j<k+l
relative time index 1 1=0

Fig. 7. Example for the derivation of AL

p(SF&, yj51i) is selected. Th’ is probability can be calculated
by multiplying the branch transition probabilities associated to
path i. They are T~(s’(~), s (i)) for 1 < j 5 Ic and defined in
(39). The maximum is not changed ifwe take the logarithm,
and hence we perform the same metric computation as de-
scribed for the forward recursion of the Log-MAP algorithm
in Section III-A. The values log AI, and log BI, from (40) and
(41) are additive and the same for all paths i and therefore
are irrelevant for the maximization. As already mentioned
above, we assume hereby a memoryless transmission channel
and statistical independence of the relevant u within the
observation window of the VA. For the metric of the ith path
at time k we obtain

Here s ci) denotes the state of the path i at time IG, uii) is the
(i) information bit, and x~,~ are the coded bits of path i at time

Ic. For systematic codes we further have

Again the sum is over the indices v with nonpunctured coded
bits. A different derivation of the path metric (47) can be
found in [12].

P (correct) = P (path, Yjsk+l)

~(pathG,yjlk+J +P(path$,yj<k+J

This slight modification of the metric of the VA in (47) and
in (48) incorporates the a priori information about the proba-
bility of the information bits. Forney [22] already mentioned
the possibility of using a priori values in his paper, but did
not give any use or application for it. If the channel is very
good, 1 L, . yyI will be larger than 1 L(U) 1, and decoding relies on
the received channel values. If the channel is bad, as during a
deep fade, decoding relies on the a priori information L(u). In
iterative decoding this is the extrinsic value from the previous
decoding step.

exp (Uk+l(~(~“))) =
exp (A&+l(s(;l))) + exp (AJk+l(s(ii)))

exp (A”,)
= 1 + exp (A;) ’ (51)

Therefore, the likelihood ratio or “soft value” of this binary
path decision is AL, because

1%
P (correct) _ Al

1 - P (correct) - Ic’ (52)

Note that at time Ic, the joint probability of the path i and of Furthermore, it was shown in [12] that the soft output of the
the received sequence yjlk and the metric in (48) are related VA is the decision & times the L-value of the errors and can

k+l;
1

k+ d *
l=S

by
k

&+X&t/Z i, yj<k) = p(+&, yj<k) = () n Aj Bj .f?@Z)).
j=l

(49)
The terms A? and Bj correspond to those in (40) and (41) and
their product in (49) is the same for all paths at time Ic.

The soft output Viterbi algorithm (SOVA) can be imple-
mented in the register exchange mode [23] or in the trace
back mode. It will now be described for the latter mode using
the log-likelihood algebra.

As shown in Fig. 7, we wish to obtain the soft output for bit
rY&, which the VA decides after a delay 6. The VA proceeds in
the usual way by calculating the metrics for the ith path using
(48). For each state it selects the path with the larger metric
Mk (~(~1). At time k + 6 the VA has selected the maximum-
likelihood (ML’) path with index i6 and has discarded the other
path with index ii ending at this state. Along the ML path is,
which decides the bit 6k, 6 + 1 nonsurviving paths ii with
indices I = 0, . . , 6 have been discarded. Define the metric
difference as

A: = hfk+&(ii)) - h&+&&)) 2 0. (50)

Then the probability P (correct) that the path decision of the
survivor was correct at time k + 1 given yjlk+l, is from (49)

HAGENAUER et al.: ITERATIVE DECODING OF BINARY BLOCK AND CONVOLUTIONAL CODES 431

finally be approximated by

L(‘iik) M iik -j$ Aq, M & . min A;.
LO,...,6 l=O

The sum and the minimum is only over those nonsurviving
paths which would have led to a different decision Gk. Thus
we have the same hard decisions as the classical VA, and the
reliability of the decisions is obtained by taking the minimum
of the relevant metric differences along the ML path.

For’ a systematic convolutional code it can be seen from
Fig. 7, using (48) and (50), that each of the AL has the
following structure:

Therefore, the minimum value in (53) has the same structure.
Thus the SOVA output in its approximate version in (53) has
the format

Lso\TA(&) = LL,yk,l + L(u,+) + &k . (first 3 terms in (47))
\ /

-L(h)
(55)

and preserves the desired additive structure of (20). Conse-
quently, we subtract the input values from the soft output of
the SOVA and obtain the extrinsic information to be used in
the metrics of the succeeding decoder (see Fig. 4). In this
case, the extrinsic term in (55) is weakly correlated to the
other two terms. Furthermore, it has been shown that for
small memories the SOVA is roughly half as complex as the
Log-MAP algorithm [21].

C. MAP Decoding Rule for Linear Binary Block Codes

The results of Sections III-A and III-B can be applied to
any code for which a trellis, especially a binary trellis, can be
drawn. It is well known that the codewords of a linear binary
(N, K) block code C can be represented as paths through a
trellis of depth N with at most 2N-K states [2], [9], [24].
For the construction of the trellis, the systematic H-matrix of
the code is. used and this results in a trellis with an irregular
structure as opposed to the regular trellis of the convolutional
codes. Each transition between two states is labeled with the
appropriate codeword symbol Zk, where the first K symbols
are equal to the information bit uk and the following N - K
symbols represent parity bits. Hence two paths leave each
existing state during the information part, whereas in the parity
part only one path leaves each present state. (For convolutional
codes this is the case in the last m time instants of a terminated
trellis.) The branch transition probability in (36) for systematic
block codes with statistically independent information bits can
therefore be written as

‘-fk(S’, s) = p(+‘) ?‘(Ykls’, s) = &‘(zk; Yk) (56)

with P(B~;?J~) defined as

Note that the branch transition probability is only defined when
there is a transition from state s’ at time k - 1 to state s at time
/?. The probability of P(uk) . 1s calculated according to (40). For
the calculation of the conditioned probability p(&]zk) we use
a similar formula as in (41) but without the summation term.
Furthermore, we obtain for the log-likelihood ratio associated
with definition (57)

L(Xk; yk) = log (p(Xk = +I; yk)/P(xk = -1;Yk))

l<k<K
K+l<k<N. (58)

Omitting the terms which are equal for all transitions from
time Ic - 1 to time Ic and using the preceding definition of
L(xk; yylc), the branch transition operation to be used in (37)
and (38) can be written as exp(L(zk;yk)zk/2).

The forward recursion and the backward recursion of the
“symbol-by-symbol” MAP algorithm are performed using (37)
and (38). .In analogy to (44), the MAP rule for block codes
can be written as

c ak-l(S’) . Pk(s)
(s’,s)

L(‘&) = Lc. Yk + L(t&) + log uk=+l
c Qk-l(S’) ’ @k(s)’

(59)
(s’,s)

ulc=-I

Using the approximation described in Section III-A, the Log-
MAP realization for systematic block codes results in

LLo,=MAP(~k) = Lc ’ yk + L(uk)

+ F (1% ak-l(s’) + l%bk(s))
Yk=+l

with

- ;5a’: (logak-&‘) + l%pk(s)). (60)
,,~:I

logPk-l(s’) = rosy logPk(s) i- iL(xk; YC) .xk .
>

(62)

In the following we will consider further ways of implement-
ing the MAP decoding rule for linear block codes including a
priori information in a unified presentation. This goes beyond
what is known in the literature [2], [25] and is necessary for
the iterative decoding technique as described in Section II-
C. The first one implements the original code and is closely
related to the “symbol-by-symbol” MAP algorithm described
in this section. The second one uses the dual code and both
algorithms lead to the same result. Further details are given
in [26].

438 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 2, MARCH 1996

D. Straight$orward Implementation of the
“Symbol-by-Symbol” MAP Algorithm

Using the definitions (57) and (58) from the previous
section, (19) can also be written as

c. WY)
ZEC,ug=+l

L(‘iLk) = 1% c p(5,y)

wzC,ug=-1

c
rec,tQ=+1

= log (fi P(Yh) . ii
j=l j=l

N K

n P(YjlXj) . l-I
j=l j=l

N
P(Uk = $1; Yk) . c n P(xj;Yj)

= log
r~C,uk=+l j=l,j#k

p(uk = -b!/k) ’ c i?i P(xj;Yj)
z~C,uk=-1 j=l,j#k

= L(uk) + h/k

c exp (L(xj; Yj)xjP)
+ log

z~C,u~=+l j=l,j#k
Ai

c exp (L(xj; ~jYj)qP)
r~C,u~=-1 j=l,j#k

-L(h)
(63)

For the evaluation of (63) it is useful to separate the codewords
into two groups; one with all codewords having a “+l” at the
lath position, and the other with all codewords having a “-1”
at the lath position. This separation can already be implemented
into the trellis by minor changes in the construction principle
[2]. The trellis is now built up by using all columns of
the H = (hl,...,hN) matrix excluding the kth one, and
additionally by storing every path ending at time N at state
SN = hk. From now on we will call the two possible ending
states Send1 = 0 and Senda = hk. The time steps ‘;n the
trellis will be named after the corresponding column of the
H matrix, so that the lath time instant will no longer appear in
the trellis. The paths ending in the zero state Send1 represent
the codewords with a “fl” at the kth position and the paths
ending in the state Send2 represent the codewords with a “-1”
at the &h position.

Using the notation of Section III-C, the numerator of (63)
is equal to the forward metric of the ending state Send1 = 0,
aN(Sendr), and the denominator of (63) is equal to the forward
metric of the second ending state Send:! = hk, QIN(S~~~~).

Equation (63) can then be written as

L(ck) = Lcyk + L(‘zLk) + loi%aN(‘%ndl) - 1% aN(‘%ndS).

(64)

For the calculation of CyN we can either use the exact formula
in (37) or its approximation in (61).

In general, one has to construct K different trellises to
obtain the soft output L(&) for all information bits. For the
class of cyclic codes the trellises for the different information
bits are obtained by simply shifting the indices. Fig. 8 shows
a block diagram for the calculation of the soft outputs L(uk)
for the (7,4,3) Hamming code in systematic form.

Summing up the results of the last two sections we have
presented two ways of implementing the “symbol-by-symbol”
MAP rule for linear binary systematic block codes. In both
realizations we have to build up the trellis (or the modified
trellis) for the original code with at most 2N-K states.
Following the ideas of Bahl et al. [9], the soft output for
all information bits is calculated with one forward and one
backward recursion in the trellis. Following the ideas of Battail
et al. [2], the soft output for all information bits is calculated
with K forward recursions in the modified trellis. The metric
computations and their approximations are the same in both
algorithms.

E. Implementing the “Symbol-by-Symbol”
MAP Decoder Using the Dual Code

Hartmann and Rudolph [25] and Battail, et al. [2] found a
way to calculate the probabilities P(Ul, = &l/v) using the
codewords of the dual code C’. In coding systems where the
dual code has fewer codewords than the original code, i.e., if
N - K < x < K, this results in a reduction of the decoding
complexity.

Both publications only present the formula for equally
probable information bits. Here we will present the extended
formula, where the a priori information is also involved.

For the derivation of the formula given in the Appendix
we follow the idea of Hartmann and Rudolph [25] and finally
obtain (see (65) at the bottom of this page). Here z’ denotes the
codewords of the dual code C’, and we use the index i = 1
for the all-“$1” codeword.

For i.i.d. information bits Uk, i.e., L(Uk) = 0, a Similar

relation can be found in [2]. Hartmann and Rudolph [25]
were only interested in a “symbol-by-symbol” MAP decoder
with hard outputs, and they did not investigate either soft-
output information or a priori information. Both are crucial
for iterative decoding.

2N-K N

lf c n (tanh (L(z .. y.)/2))‘1-“‘3)‘2 3, 3
L(iik) = L,yk + L(uk) + log

.i=2 j=l,j#k
ZN-K

l - %z2 kxbk) j=?i,k banh (L(xii yj)/2))(1-z’J)‘2

(65)

. ,
L(G)

HAGENAUER et al. : ITERATIVE DECODING OF BINARY BLOCK AND CONVOLUTIONAL CODES

Fig. 8. ‘Soft-in/soft-out’ decoder for the (7,4,3) Hamming code.

The dual code C’ can also be represented in a trellis, now
with a maximum of 2K states. The corresponding metrics for
every node are for the forward recursion

and for the backward recursion

pk-l(s’) = xrk(s’, s) ’ p,(s).
s

(66)

(67)

Whenever a transition between s’ and s exists the branch
transition operation is defined as

y,?&‘, S) = (tanh(L(zk; yk)/2))(1-“‘)‘2. (68)

The forward and backward recursion is initialized with
&a(O) = 1 and with PN(O) = 1, respectively.

Again we have two ways of implementing the “symbol-by-
symbol” MAP rule using the dual code. We can build up the
full trellis for the dual codewords and run one forward and one
backward recursion. Then the soft output for each information
bit is calculated according to

L(ck) = h/k + L(uk)

+ log

& &c-l wm

& Gk-@)~k(~) - .,sq, ~k-ds’)fik(s)’

=1,=1-l z’ z-1 k

(69)

The other way is to construct the modified trellis for the
dual codewords according to Section III-D and to perform
one forward recursion for each information bit. Then the soft
output can be written as

SN (SendI) + &N (Send2)
L(ck) = ‘%/k + L(uk) + log x

aN(Sendl) - GN (Send:!)

= LcYk + L(uk) + 2af ianh (~N(Send2)/~N(Sendl)).

(70)

439

The dual code of a cyclic code is also cyclic, i.e., the modified
trellises for every information symbol can be built one from the
other by simply shifting the indices. In Fig. 9 we see a block
diagram for the calculation of the soft outputs L(zk) with (70)
for the (7,4,3) Hamming code implementing its dual code, the
(7,3,4) maximum length code. The dual code implementation
has more states than the straightforward implementation shown
in Fig. 8. However, this is more than compensated by the fact
that there are fewer code words to be checked, resulting in a
very sparse trellis.

F. Simplijcations of the “Symbol-by-Symbol”
MAP Rule for Some Special Codes

The simple (N, N - 1) single parity check code (SPC) and
the (N, 1) repetition code (RC) are both very weak codes, but
they are excellent tools for constructing powerful concatenated
codes, e.g., multidimensional product codes or Reed-Muller
codes.

The dual code of the SPC has only two codewords, therefore
the easiest way to obtain the “symbol-by-symbol” MAP rule
is by using (65). W ith (II), this results in

L(h) = L,yk + L(Uk) + fj? L(xj; y.j) (71)
j=l,j#k

with the last term being the extrinsic information. Again we
want to stress that one obtains the same formula using (63)
for the MAP rule after some transformations. For the RC the
implementation of the original code is the easiest way and we
obtain as expected

N

L(fik) = cL(xj; Yyj).
j=l

(72)

For i.i.d. information bits only, both formulas can be found
in the paper by Battail et al. [2], and also in the literature

440 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 2, MARCH 1996

Fig. 9. “Soft-in/soft-out” decoder for the (7,4,3) Hamming code using the dual code implementation.

lMR=O.80, random intt.

0.0 1.0 2.0 3.0 4.0 5.0 6.0
E&, in dB

Fig. 10. Convolutional-convolutional component codes, component
codes: memory 2, punctured from rate-l/2 mother code, interleaver size
Ii1 x Ii2 = 30 x 30- , six iterations with SOVA, random interleaver.
For reference purposes the points 0 at R = 0.5 are obtained with a
block interleaver.

about threshold decoding and its extension, the a posteriori
probability (APP) decoder [27], [28]. .

Suboptimal solutions for the MAP decoder are possible by
using only a limited number of codewords of the original code
or the dual code in (63) or (65), respectively. A class of codes
where the suboptimal solution is easily feasible and which
is expected to give good results is the class of orthogonal
codes. For a code with J orthogonal parity check equations,
a suboptimal solution for the MAP rule can be implemented
by using the approximate likelihood ratio derived from the J
orthogonal parity check equations only

L(‘iLk) z L(& 1 J orth. parity checks)

=h/k+L(p(k)+~
j=l

Wj denotes the set of positions (without the kth one) of a
“-1” in the jth orthogonal parity check equation.

TABLE I
PARAMETER OF THE CONVOLUTIONAL

COMPONENT CODES USED IN THE SIMULATIONS
(The rate of the mother code is l/2. The generator polynomials for the

memory 2 codes are go(D) = 1 + D + D2, g1 (D) = 1 f D* , and for the
memory4codesweusedgu(D) = 1+D3+D4,g1(D) = 1+D+D2+D4)

rate parity puncturing-pattern total
rate

w 10000000 0.80
8110 10001000 0.67
s/11 10101000 0.57
8112
8j13

10101010 0.50
11101010 0.44

8114 11101110 0.40
8116 11111111 0.33

IV. SIMULATION RESULTS

A. Convolutional-Convolutional Component Codes

Fig. 10 shows the performance of convolutional-convol-
utional component codes, i.e., convolutional codes in both
dimensions. Such codes were named “turbo” codes in [8],
although there is nothing “turbo” in the code. Only the de-
coder uses feedback information and could be named “turbo”
decoder in analogy with a turbo engine. The component code
is realized by a feedback systematic encoder with punctured
parity bits and its rate varies between l/2 and 819.

The parameters of the code are given in Table I. Conse-
quently, the overall code rate R is between l/3 and 8/10.
The block size K1 x K2 of a random interleaver is fixed
to be 30 x 30 = 900. This is a good compromise between
the performance obtained by increasing the block size and
reasonable delay.

For reasons of space, it is not possible to refer to the pseudo-
random interleaver mapping in this paper. No special effort
was made to optimize this pseudo-random interleaver as in
[16]. For reference purpose we also show two points with the
well-defined block interleaver in Fig. 10. Enlarging the block

HAGENAUER et al.: ITERATIVE DECODING OF BINARY BLOCK AND CONVOLUTIONAL CODES

TABLE II
AVERAGE NLIMBER OF ITERATIONS USING THE STOP CRITERION IN (34)

(Overall code rate l/2, component code rate 2/3, memory 2, interleaver size I<1 x I<2 = 30 x 30,
SOVA, AWGN channel, more than 1000 bit error events per measured-points.)

max. number of iterations: 6 max. number of iterations: 10
average num- relative increase of average num- relative increase of

Eb/N, ber of itera- BER due to the use of ber of itera- BER due to the use of
tions the stop criterion tions the stop criterion

2.0 4.44 4.87
2.5 3.42 I 2% 3.51 5 7%
3.0 2.73 2.74

441

size from 200 to 680, 900, and 3200 improves the coding
gain at a BER of lop4 by 0.5, 0.7, and 1.2 dB, respectively.
All the simulations were done for an AWGN channel. Each
simulation point represents at least lo3 bit error events. In [20]
we presented simulation results for Rayleigh channels.

The convolutional code used in Fig. 10 has a memory
m = 2. We also simulated a convolutional code with m =
4. However, at a BER of 10B4 the 16-state convolutional
code behaves only slightly better (0.1 dB) than the 4-state
convolutional’ code. The SOVA has a significantly lower
complexity. Therefore, we used for the simulations the SOVA
instead of the MAP algorithm. Furthermore, the loss of the
SOVA compared to the MAP algorithm is only about 0.5 dB
at a BER of 10e5 (Ki x KZ = 900, R = l/2).

The results with the convolutional component codes im-
prove with the number of iterations. Most of the gain in
iterative decoding is achieved by the first two or three iter-
ations (one iteration includes a horizontal and the following
vertical decoding). The results presented here are for six
iterations. At a BER of 10e4 we achieve an additional gain
of 2.2 dB by going from one iteration to six iterations. By ten
more iterations the further improvement is only 0.2 dB.

In Fig. 10 we have presented results with a fixed number of
iterations. If the cross-entropy is used as a stop criterion the
number of iterations becomes a random variable resulting in
a smaller average value.

This is shown in Table II. The usefulness of the stop
criterion becomes clear for an operating point of 3 dB. Instead
of ten iterations we only need an average of 2.74 iterations
and the small increase in the error rate shows that we miss
only a few errors.

B. Block-Block Component Codes

Fig. 11 shows the performance with simple Hamming codes
as component codes. We used the dual code method in Section
III-E for decoding. The resulting overall code rates R are in
the range of 0.4 to 0.83. The same (N, K, 3) Hamming code
is used in both dimensions. The block size of the information
part is K x K. This means that every row or column consists
of only one codeword and that the interleaver size varies.
We performed simulations for block as well as for random
interleaving. The results did not differ much. The curve in
Fig. 11 shows the results after six iterations. If three iterations
are used the loss is only about 0.2 dB at a BER of 10m4.
Note in Fig. 11 that for R = 0.83 the component code with

10”
u, RzO.40, (i,4)(7,4)

1 0.4

0.0 1.0 2.0 3.0 4.0 5.0 6.0
E,/N, in dB

Fig. 11. Block-block component codes with overall code rate R, using
Hamming codes as component codes, six iterations with (69, interleaver size
Ii x Ii.

the simple (63,57,3) Hamming code as component code is
only 1.2 dB away from the Shannon capacity limit at a BER
of 10-5, albeit with a block interleaver size of 3249 bits.
The capacity limit is derived under the assumption of binary
input/real output channel and for a capacity equal to the code
rate.

The block-block decoding system with block interleaving
fails in decoding a rectangular error pattern (with more than
d,i,/2 errors in each direction, see Fig. 12(a). Therefore, we
designed an improved interleaver similar to the one suggested
by Nilsson [17]. The main idea indicated in Fig. 12(b) is to
connect as many information bits as possible of a vertical
codeword to other information bits of vertical codewords via
the horizontal code. The improved interleaver consists of KZ
subblocks of size K1 x I, with 1 2 max(K1, Kz). The KZ
information bits of one vertical codeword are formed by the
bits at the same position in each of the Kx subblocks. After
the encoding with the vertical code Cl, the information bits
in the subblocks are shifted column-wise. Enumerating the
subblocks from 0 to 1 - 1 the interleaving can be described
as follows: In the 0th subblock we have no permutation. In
the first subblock we perform for every column (except the
first one) a cyclic shift by one position relative to its left
neighbor column. In the second subblock we perform for
every column (except the first one) a cyclic shift by two
positions relative to its left neighbor column, etc.. After these

442 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 2, MARCH 1996 I I I Q error 1 I , I ----- -__-_
e ----- ----_

___-_ ----_
e e --- -

I

m _---_

ho~&bntd code ’ htical code B

10.’

1o-2

10”
(a)

10”

I

code

Fig. 12. (a) Noncorrectable error pattern for the block interleaver. (b) With
the improved interleaver this error pattern is correctable. (c) Improved
interleaving scheme for the (7,4,3) Hamming code with 2 = 4.

permutations, the horizontal code is taken over each of the
I . K2 rows of the subblocks. If we choose 1 to be the smallest
prime number with 1 2 max(Kr, Kz), then we can correct

x-b R=O.Kl, (+,4)(7,4), in&wed interl. 114 x-b Re0.40, (+,4)(7,4), in&wed interl. 114
+-OR=O.58, (15,11)(15,11), improvedinted. I=11 +-OR=O.58, (15,11)(15,11), improvedinted. I=11

_,........... :............ MR=O.72. (31,26)(31.26), improved interl. k26 _,........... :............ MR=O.72. (31,26)(31.26), improved interl. k26

0.0 1.0 2.0 3.0 4.0 5.0 6.0
EJN, in dB

Fig. 13. Block-block component codes with rate R, using Hamming codes
as component codes, six iterations with (69, improved interleaver ‘of size
Ii x (I Ii) as in Fig. 12.

every rectangular error pattern with more than d,i,/2 errors
in each direction. Otherwise, some of the rectangular error
patterns might remain uncorrectable. Fig. 12(c) shows the
whole improved interleaving scheme for the (7,4,3) Hamming
code with 1 = 4. The results given in Fig. 13 are obtained
using the improved interleaver with 1 = K. We also simulated
the improved interleaver with Z = 5 for the (7,4,3) Hamming
code and with 1 = 29 for the (31,26,3) Hamming code, but
the results showed no significant difference compared to those
presented in Fig. 13.

After submission of the paper we became aware of the paper
[29], in which a modified Chase algorithm is used for iterative
decoding. However, in [29] they use ‘factors optimized by
simulation’ for weighting the soft information. Although a full
product code with a lower rate is used, their results are worse
by 0.4 dB at a BER above 10P5.

C. Discussion of the Simulation Results

The simulation results point out that convolu-
tional-convolutional component codes perform well at
low code rates. On the other hand, Hamming-Hamming
component codes perform well at high rates. For a given BER
it is possible to define a “threshold rate”: for rates smaller
than this value, one should use convolutional-convolutional
codes, and for rates greater than this rate it is better to choose
block-block codes. For the simulated code combinations the
threshold rate is 0.67 at a BER of 10P4. This is because
high rate punctured convolutional codes are very weak as
component codes, whereas good high-rate block codes exist
which can be decoded with a reasonable complexity using
the method given in Section III-E.

The combination of convolutional and Hamming codes is
also possible and we performed several simulations. How-
ever, our simulations showed that this combination is worse
than a convolutional-convolutional or Hamming-Hamming
code. Only for rates near the threshold rate the combination
of convolutional and Hamming codes performs as well as
the Hamming-Hamming codes. In our simulations we used

HAGENAUER et al.: ITERATIVE DECODING OF BINARY BLOCK AND CONVOLUTIONAL CODES 443

the suboptimal SOVA and the optimal MAP algorithm for as the notation for the N-dimensional vector with “- 1” in the
decoding the convolutional and the block code, respectively. kth postion and “+l” elsewhere we obtain

V. CONCLUSIONS
P(UL = b ly) = & c P (5, Y)

ztc
uIc=b

We have investigated several aspects of systematic two-
or more dimensional codes decoded by iterative “soft-in/soft-
out” decoders. Iterative decoding is possible for convolutional
codes in systematic feedback form, for any systematic block
code or for combinations thereof using appropriate “soft-
in/soft-out” algorithms derived from the MAP principle. The
so-called “turbo” codes in [8] are just one example. For
achieving nearly optimal performance the proper transferring
of extrinsic information, from one iteration to the next, is
crucial.

= --& C P (2, Y) . S+i,(xae,c3b). (74)
3232

Futhermore, we define the a priori probability
element ‘u of the whole vector space V, to be

Pv (71) of any

(75)

We conclude that very simple component codes such as
the 4-state convolutional code and the Hamming codes are
sufficient to achieve surprisingly good results. The minimum
free distance of the component codes and the resulting mini-
mum free distance of the two-dimensional code is not of prime
importance for bit error rates above 10p5. The interleaver,
the soft-output component decoder, and the method of infor-
mation transfer between the component decoders influences
the performance. We urgently need tools to analyze and
bound the performance in this range. As pointed out by
Battail [4] very early, the asymptotic distance properties are of
minor importance for this type of iteratively decoded codes.
The variety of algorithms and combinations needs further
investigation including the usage of other binary block codes
and the search for suboptimal decoder algorithms.

However, with these simple codes and the associated de-
coding tools we achieve a BER of 10e4 with an Eb/No
of only 2 to 3 dB and rate l/2. This is around the value
determined by the cutoff rate and is only 2 dB away from
the channel capacity limit. For higher rates and with simple
block codes as component codes, we are even closer to the
capacity limit.

Hence, for the joint probability density function pv,y(w, y) =
p(y]v) . Pv(v) using the definition of p(vj; yj) in (57) and
(75) we obtain

PV,Y (‘u, Y) = & fi P(Yh) fi P(9)
j=1 j=l

= 2K-N fi p(vj; yj)
j=l

(76)

and for the joint probability function of codewords px,y(z, y)
we get

PX,Y (x3 Y) = 2 N-KPv,Y (VI Y) IVE2. (77)

Defining the finite Fourier transform

PV,Y(? Y) = $ c F(w, Y)W 0 21
V&V,

(78)

and using (77), px,y (z, y) can be written as

px,y(x, y) = $ c F (w, Y>W 0 x
WEVN

(79)

APPENDIX
where

DERIVATION FOR THE “SYMBOL-BY-SYMBOL"
MAP DECODING RULE USINGTHE DUAL CODE

F(w, y) = c PV,YhY)W 0 ‘u

The main idea is to express P(uk = bly), b E GF(2)
with the elements { +l, -l}, as a function’ over the whole
code space and to use the finite Fourier transform. Hereby
we follow the derivation found in [25]. Note that “$1” is
the “null” element under the @ addition, and that “-1” is
the “one” element under the @ multiplication. For vectors
‘u 0 w denotes the scalar product in GF (2), where ‘u and w are
elements of the vector space V, of all N-tuples over GF (2).
We only consider linear binary block codes in systematic form,
where the information bits uk are statistically independent. The
codeword 2 is transmitted over a time-discrete memoryless
channel. Defining S;,, = 1, if i = j and S;,j = 0, if i # j
and using

ZZ 2K-N fi (p(+l; guj) + ~(-1; ~j)wj). (80)
j=l

Furthermore, observe that

fi+l,(zOwM) = Z j 1 c ta(x~ek@b). (81) tE{+l,-11
Using the relation of a dual code z’ E C’

ek = (1 - 2Sk,l,...,l- 2Sk,~)

c
wax= (82)

XEC

444 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 2, MARCH 1996

2N-K N

c c n (1 + XLj $ t @ (1 - 2&j) . e-L(zJq

= log
t~{+l,-l} i=l j=l

2N-K N
(84)

C t C n (1 + xij @ t 0 (1 - 2Sk,j) . e-L(zJ;YJ))
tE{+l,-l) i=l j=l

and substituting (81) and (79) in (74) finally yields

quk = b /y) = & c t o b c F (x’ @ t 0 erc,y).
tE{+l,-l) X’EC’

(83)
Applying (80) to (83) and using the definition of L(sj; yj) in
(58) we obtain (see (84) at the top of the page). After explicitly
rewriting the first sum and extracting the kth term from the
product, the numerator and the denominator in (84) can be
written as

2N-K N

(85)
i=l j=l,j#k

and

2&K

2. e-ek;Yk) . C xik fi (1 + xij epL(“21Yj)) (86)
i=l j=l,j#k

respectively. Dividing (85) and (86) by the term

N

rI (
1 + e-G, iYJ 1

>
j=l,j#k

and with the transformation

N

0

1 + xLj . eeLCz2;Yj)

j=l,j#k
1 + e-L(z3iY3)

N

=U

exp (L(zj; yj)) - 1 (1-z:J)‘2
exp (L(xj; ~j)) + 1

(87)
j=l,j#k

we finally obtain

Using again the relation

tanh (x/2) = (ez - l)/(e” + 1)

and using the index i = 1 for the all-“t-1” codeword, the
formula can also be written as

2&K N

1+ c n (tanh (L(x (. y ~)/2))“-“‘J”2 3, 3
L(‘iik) = L&k + L(uk) + log

i=2 j=l,j#k

2N-K
1 - ij2 (-xik,) jzg+k (tanhlL(Xji %)/2))‘1-“r3)‘2

(89)

or using (13) as

L(ck) = &/k + L(Uk) + log (90)

which allows the approximation given in (12).

HAGENAUER er al.: ITERATIVE DECODING OF BINARY BLOCK AND CONVOLUTIONAL CODES 445

VII. ACKNOWLEDGEMENT

The authors wish to thank Prof. J. B. Anderson and two
anonymous reviewers whose comments were very helpful in
improving an earlier version of this paper.

REFERENCES

Ul

[21

r31

[41

[51

El

r71

181

[91

[lOI

[ill

WI

J. Hagenauer, E. Offer, and L. Papke, “Matching Viterbi decoders and
Reed-Solomon decoders in a concatenated system,” in Reed-Solomon
Codes and Their Applications, S. Wicker and V. K. Bhargava, Eds.
New York IEEE Press, 1994, ch. 11, pp. 242-271.
G. Battail, M. C. Decouvelaere, and P. Godlewski, “Replication de-
coding,” IEEE Trans. Inform. Theory, vol. IT-25, pp. 332-345, May
1979.
G. Battail and H. M. S. El-Sherbini, “Coding for radio channels,” Ann.
T&commun., vol. 37, nos. 1-2, pp. 75-96, Jan../Feb. 1982.
G. Battail, “Building long codes by combination of simple ones,
thanks to weighted-output decoding,” in Proc., URSZ ISSSE (Erlangen,
Germany, Sept. 1989), pp. 634-637.
J. Lodge, P. Hoeher, and J. Hagenauer, “The decoding of multidimen-
sional codes using separable MAP ‘filters ‘,” in Proc. 16th Biennial Symp.
on Communications (Queen’s University, Kingston, Ont., Canada, May
1992), pp. 343-346.
J. Lodge, R. Young, P. Hoeher, and J. Hagenauer, “Separable MAP
‘filters‘ for the decoding of product and concatenated codes,” in Proc.,
IEEE Znt. Conj on Communications (Geneva, Switzerland, May 1993),
pp. 1740-1745.
J. Hagenauer and P. Hoeher, “Concatenated Viterbi-decoding,” in Proc.
4. Joint Swedish-Soviet Int. Workshop on Information Theory (Gotland,
Sweden, Aug. 1989), pp. 29-33.
C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes(l),” in Proc., IEEE
Int. Co@ on Communications (Geneva, Switzerland, May 1993), pp.
1064-1070.
L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,” IEEE Trans. Inform.
Theory, vol. IT-20, pp. 284-287, Mar. 1974.
S. Shamai (Shitz) and S. Verdh, “Capacity of channels with uncoded
side information,“European Trans. Telecommun. (En) (Special Issue
on Turbo Decoding), Sept. 1995.
J. Hagenauer and L. Papke, “Decoding ‘Turbo’ codes with the soft-
output Viterbi algorithm (SOVA),” in Proc. Int. Symp. on Information
Theory (Trondheim, Norway, June 1994), p. 164.
J. Hagenauer, “Source-controlled channel decoding,” IEEE Trans. Com-
mun., vol. 43, no. 9, pp. 2449-2457, Sept. 1995.

[I31

U41

1151

[I61

u71

[I81

[I91

WI

[211

WI

1231

r241

1251

1261

1271

ml

[291

G. Battail and R. Sfez, “Suboptimum decoding using Kullback princi-
ple,” in Lecture Notes in Computer Science, no. 313;B. Bouchon et al.,
Eds. Berlin: Springer-Verlag, 1988, pp. 93-101.
M. Moher, “Decoding via cross-entropy minimization,” in Proc., IEEE
Globecom Con$ (Houston, TX, Dec. 1993) pp. 809-813.
P. Guinand and J. Lodge, “Trellis termination for turbo codes,” in Proc.,
17th Biennial Symp. on Communications (Queen’s University, Kingston,
Ont., Canada, May 1994), pp. 389-392.
P. Robertson, “Illuminating the structure of decoders for parallel con-
catenated recursive systematic (turbo) codes,” in Proc., IEEE Globecom
Co@ (San Francisco, CA, Dec. 1994), pp. 1298-1303.
J. Nilsson and R. Kotter, “Iterative decoding of product code construc-
tions,” m Proc., Inc. Symp. on Infoi-mation Theory and Its Applications
(Sydney, Australia, Nov. 1994), pp. 1059-1064.
L. R. Bahl, I. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,” in Abstracts of Papers,
Znr. Symp. Inform. Theory (Asilomar, CA, Jan. 1972), p. 90.
P. L. McAdam, L. Welch, and C. Weber, “M.A.P. bit decoding of
convolutional codes,” in Abstracts of Papers, Inc. Symp. on Information
Theory (Asilomar, CA, Jan, 1972), p. 91.
J. Hagenauer, L. Papke, and P. Robertson, “Iterative (‘turbo‘) decoding
of systematic convolutional codes with the MAP and the SOVA al-
gorithms,” in Proc., ITG-Fachtugung ‘Codierung ’ (Munich, Germany,
Oct. 1994), pp. 21-29.
P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal
and sub-optimal MAP decoding algorithms operating in the log domain,”
in ZEEE Inc. Con$ on Communications (Seattle, WA, June 1995). pp.
1009-1013.
G. D. Fornev, “The Viterbi algorithm,” Proc. IEEE, vol. 61, pp.
268-278, M&. 1973.

._

J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision
outputs and its applications,” in Proc., IEEE Globecom Co@ (Dallas,
TX, Nov. 1989), pp. 1680-1686.
J. K. Wolf, “Efficient maximum likelihood decoding of linear block
codes using a trellis,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 76-80,
Jan. 1978.
C. R. Hartmann and L. D. Rudolph, “An optimum symbol-by-symbol
decoding rule for linear codes,” IEEE Trans. Inform. Theory, vol. IT-22,
pp. 514-517, Sept. 1976.
E. Offer, “Decodierung mit Qualitltsinformation bei verketteten Codier-
systemen,” Ph.D. dis&tation, submitted to Tech. Univ. Munich, Mu-
nich, Germany, July 1995.
J. L. Massey, Threshold Decoding. Cambridge, MA: M.I.T. Press,
1963.
G. C. Clark, Jr. and J. B. Cain, Error-Correction Coding for Digital
Communications. New York: Plenum, 1982.
R. Pyndiah, A. Glavieux, A. Picart, and S. Jacq, “Near optimum
decoding of product codes,” in Proc., IEEE Globecom Conf (San
Francisco, CA, Nov. 1994), pp. 339-343.

