A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
The Gaussian equivalence of generative models for learning with shallow neural networks
[article]
2020
Understanding the impact of data structure on the computational tractability of learning is a key challenge for the theory of neural networks. Many theoretical works do not explicitly model training data, or assume that inputs are drawn component-wise independently from some simple probability distribution. Here, we go beyond this simple paradigm by studying the performance of neural networks trained on data drawn from pre-trained generative models. This is possible due to a Gaussian
doi:10.48550/arxiv.2006.14709
fatcat:a2ezqij24ngqzgej6fje6rfin4