Deep Fusion of Remote Sensing Data for Accurate Classification

Yushi Chen, Chunyang Li, Pedram Ghamisi, Xiuping Jia, Yanfeng Gu
2017 IEEE Geoscience and Remote Sensing Letters  
The multisensory fusion of remote sensing data has obtained a great attention in recent years. In this letter, we propose a new feature fusion framework based on deep neural networks (DNNs). The proposed framework employs deep convolutional neural networks (CNNs) to effectively extract features of multi-/hyper-spectral and light detection and ranging (LiDAR) data. Then, a fully connected DNN is designed to fuse the heterogeneous features obtained by the previous CNNs. Through the aforementioned
more » ... deep networks, one can extract the discriminant and invariant features of remote sensing data, which are useful for further processing. At last, logistic regression is used to produce the final classification results. Dropout and batch normalization strategies are adopted in the deep fusion framework to further improve classification accuracy. The obtained results reveal that the proposed deep fusion model provides competitive results in terms of classification accuracy. Furthermore, the proposed deep learning idea opens a new window for future remote sensing data fusion. Index Terms-Convolutional neural network (CNN), data fusion, deep neural network (DNN), feature extraction (FE), multispectral image (MSI), hyperspectral image (HSI), light detection and ranging (LiDAR).
doi:10.1109/lgrs.2017.2704625 fatcat:bmplmahdureynasabirdfavz24