A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
An Efficient Approach to Select Instances in Self-Training and Co-Training Semi-supervised Methods
2021
IEEE Access
Semi-supervised learning is a machine learning approach that integrates supervised and unsupervised learning mechanisms. In this learning, most of labels in the training set are unknown, while there is a small part of data that has known labels. The semi-supervised learning is attractive due to its potential to use labeled and unlabeled data to perform better than supervised learning. This paper consists of a study in the field of semi-supervised learning and implements changes on two
doi:10.1109/access.2021.3138682
fatcat:nladlulkfner3bm4cmxujzt34y