A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Adaptive Submodular Ranking and Routing
[article]
2019
arXiv
pre-print
We study a general stochastic ranking problem where an algorithm needs to adaptively select a sequence of elements so as to "cover" a random scenario (drawn from a known distribution) at minimum expected cost. The coverage of each scenario is captured by an individual submodular function, where the scenario is said to be covered when its function value goes above a given threshold. We obtain a logarithmic factor approximation algorithm for this adaptive ranking problem, which is the best
arXiv:1606.01530v2
fatcat:e4lnyl63indcjnpgeuadu6xyfe